These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36540968)

  • 21. Automated disease cohort selection using word embeddings from Electronic Health Records.
    Glicksberg BS; Miotto R; Johnson KW; Shameer K; Li L; Chen R; Dudley JT
    Pac Symp Biocomput; 2018; 23():145-156. PubMed ID: 29218877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boosting ICD multi-label classification of health records with contextual embeddings and label-granularity.
    Blanco A; Perez-de-Viñaspre O; Pérez A; Casillas A
    Comput Methods Programs Biomed; 2020 May; 188():105264. PubMed ID: 31851906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing methods for drug-gene interaction prediction on the biomedical literature knowledge graph: performance versus explainability.
    Aisopos F; Paliouras G
    BMC Bioinformatics; 2023 Jun; 24(1):272. PubMed ID: 37391722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Method to Learn Embedding of a Probabilistic Medical Knowledge Graph: Algorithm Development.
    Li L; Wang P; Wang Y; Wang S; Yan J; Jiang J; Tang B; Wang C; Liu Y
    JMIR Med Inform; 2020 May; 8(5):e17645. PubMed ID: 32436854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knowledge-driven drug repurposing using a comprehensive drug knowledge graph.
    Zhu Y; Che C; Jin B; Zhang N; Su C; Wang F
    Health Informatics J; 2020 Dec; 26(4):2737-2750. PubMed ID: 32674665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of COVID-19 research: a study on predicting influential scholarly documents using machine learning and a domain-independent knowledge graph.
    Rabby G; D'Souza J; Oelen A; Dvorackova L; Svátek V; Auer S
    J Biomed Semantics; 2023 Nov; 14(1):18. PubMed ID: 38017587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-sensitive clinical concept embeddings learned from large electronic health records.
    Xiang Y; Xu J; Si Y; Li Z; Rasmy L; Zhou Y; Tiryaki F; Li F; Zhang Y; Wu Y; Jiang X; Zheng WJ; Zhi D; Tao C; Xu H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):58. PubMed ID: 30961579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BioKEEN: a library for learning and evaluating biological knowledge graph embeddings.
    Ali M; Hoyt CT; Domingo-Fernández D; Lehmann J; Jabeen H
    Bioinformatics; 2019 Sep; 35(18):3538-3540. PubMed ID: 30768158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transfer learning in proteins: evaluating novel protein learned representations for bioinformatics tasks.
    Fenoy E; Edera AA; Stegmayer G
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35758229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poincaré maps for analyzing complex hierarchies in single-cell data.
    Klimovskaia A; Lopez-Paz D; Bottou L; Nickel M
    Nat Commun; 2020 Jun; 11(1):2966. PubMed ID: 32528075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CODER: Knowledge-infused cross-lingual medical term embedding for term normalization.
    Yuan Z; Zhao Z; Sun H; Li J; Wang F; Yu S
    J Biomed Inform; 2022 Feb; 126():103983. PubMed ID: 34990838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuro-symbolic representation learning on biological knowledge graphs.
    Alshahrani M; Khan MA; Maddouri O; Kinjo AR; Queralt-Rosinach N; Hoehndorf R
    Bioinformatics; 2017 Sep; 33(17):2723-2730. PubMed ID: 28449114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patient Representation Learning From Heterogeneous Data Sources and Knowledge Graphs Using Deep Collective Matrix Factorization: Evaluation Study.
    Kumar S; Nanelia A; Mariappan R; Rajagopal A; Rajan V
    JMIR Med Inform; 2022 Jan; 10(1):e28842. PubMed ID: 35049514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Online Disease Identification and Diagnosis and Treatment Based on Machine Learning Technology.
    Hao F; Zheng K
    J Healthc Eng; 2022; 2022():6736249. PubMed ID: 35449857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings.
    Nelson CA; Butte AJ; Baranzini SE
    Nat Commun; 2019 Jul; 10(1):3045. PubMed ID: 31292438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Knowledge Graph-Enhanced Tensor Factorisation Model for Discovering Drug Targets.
    Ye C; Swiers R; Bonner S; Barrett I
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3070-3080. PubMed ID: 35939454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graph classification by means of Lipschitz embedding.
    Riesen K; Bunke H
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1472-83. PubMed ID: 19447721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protocol to implement a computational pipeline for biomedical discovery based on a biomedical knowledge graph.
    Su C; Hou Y; Levin M; Zhang R; Wang F
    STAR Protoc; 2023 Dec; 4(4):102666. PubMed ID: 37883224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Benchmark and Best Practices for Biomedical Knowledge Graph Embeddings.
    Chang D; Balažević I; Allen C; Chawla D; Brandt C; Taylor RA
    Proc Conf Assoc Comput Linguist Meet; 2020 Jul; 2020():167-176. PubMed ID: 33746351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.