These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36540969)

  • 21. LM-GVP: an extensible sequence and structure informed deep learning framework for protein property prediction.
    Wang Z; Combs SA; Brand R; Calvo MR; Xu P; Price G; Golovach N; Salawu EO; Wise CJ; Ponnapalli SP; Clark PM
    Sci Rep; 2022 Apr; 12(1):6832. PubMed ID: 35477726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supervised biological network alignment with graph neural networks.
    Ding K; Wang S; Luo Y
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i465-i474. PubMed ID: 37387160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LR-GNN: a graph neural network based on link representation for predicting molecular associations.
    Kang C; Zhang H; Liu Z; Huang S; Yin Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34889446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting Protein Functions Based on Heterogeneous Graph Attention Technique.
    Zhao Y; Yang Z; Wang L; Zhang Y; Lin H; Wang J
    IEEE J Biomed Health Inform; 2024 Apr; 28(4):2408-2415. PubMed ID: 38319781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. E(3) equivariant graph neural networks for robust and accurate protein-protein interaction site prediction.
    Roche R; Moussad B; Shuvo MH; Bhattacharya D
    PLoS Comput Biol; 2023 Aug; 19(8):e1011435. PubMed ID: 37651442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzyme function prediction using contrastive learning.
    Yu T; Cui H; Li JC; Luo Y; Jiang G; Zhao H
    Science; 2023 Mar; 379(6639):1358-1363. PubMed ID: 36996195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the Strengths and Weaknesses of Machine Learning Algorithms and Feature Selection on KEGG Database Microbial Gene Pathway Annotation and Its Effects on Reconstructed Network Topology.
    Robben M; Nasr MS; Das A; Veerla JP; Huber M; Jaworski J; Weidanz J; Luber J
    J Comput Biol; 2023 Jul; 30(7):766-782. PubMed ID: 37437088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep reinforcement learning guided graph neural networks for brain network analysis.
    Zhao X; Wu J; Peng H; Beheshti A; Monaghan JJM; McAlpine D; Hernandez-Perez H; Dras M; Dai Q; Li Y; Yu PS; He L
    Neural Netw; 2022 Oct; 154():56-67. PubMed ID: 35853320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating unsupervised language model with triplet neural networks for protein gene ontology prediction.
    Zhu YH; Zhang C; Yu DJ; Zhang Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010793. PubMed ID: 36548439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Graph-Neural-Network-Based Social Network Recommendation Algorithm Using High-Order Neighbor Information.
    Yu Y; Qian W; Zhang L; Gao R
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting ncRNA-protein interactions based on dual graph convolutional network and pairwise learning.
    Zhuo L; Song B; Liu Y; Li Z; Fu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36063562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-organism learning method to discover new gene functionalities.
    Domeniconi G; Masseroli M; Moro G; Pinoli P
    Comput Methods Programs Biomed; 2016 Apr; 126():20-34. PubMed ID: 26724853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeepRank-GNN: a graph neural network framework to learn patterns in protein-protein interfaces.
    Réau M; Renaud N; Xue LC; Bonvin AMJJ
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36420989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graph contrastive learning with implicit augmentations.
    Liang H; Du X; Zhu B; Ma Z; Chen K; Gao J
    Neural Netw; 2023 Jun; 163():156-164. PubMed ID: 37054514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A bidirectional multilayer contrastive adaptation network with anatomical structure preservation for unpaired cross-modality medical image segmentation.
    Liu H; Zhuang Y; Song E; Xu X; Hung CC
    Comput Biol Med; 2022 Oct; 149():105964. PubMed ID: 36007288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepFunc: A Deep Learning Framework for Accurate Prediction of Protein Functions from Protein Sequences and Interactions.
    Zhang F; Song H; Zeng M; Li Y; Kurgan L; Li M
    Proteomics; 2019 Jun; 19(12):e1900019. PubMed ID: 30941889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiscale Spatio-Temporal Graph Neural Networks for 3D Skeleton-Based Motion Prediction.
    Li M; Chen S; Zhao Y; Zhang Y; Wang Y; Tian Q
    IEEE Trans Image Process; 2021; 30():7760-7775. PubMed ID: 34506281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Graph Neural Network Approach for the Analysis of siRNA-Target Biological Networks.
    La Rosa M; Fiannaca A; La Paglia L; Urso A
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Deep Learning Framework for Gene Ontology Annotations With Sequence- and Network-Based Information.
    Zhang F; Song H; Zeng M; Wu FX; Li Y; Pan Y; Li M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2208-2217. PubMed ID: 31985440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.