These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 36540976)
1. A transfer learning approach based on random forest with application to breast cancer prediction in underrepresented populations. Gu T; Han Y; Duan R Pac Symp Biocomput; 2023; 28():186-197. PubMed ID: 36540976 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning Strategies for Improved Phenotype Prediction in Underrepresented Populations. Bonet D; Levin M; Montserrat DM; Ioannidis AG Pac Symp Biocomput; 2024; 29():404-418. PubMed ID: 38160295 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning Strategies for Improved Phenotype Prediction in Underrepresented Populations. Bonet D; Levin M; Montserrat DM; Ioannidis AG bioRxiv; 2023 Oct; ():. PubMed ID: 37904983 [TBL] [Abstract][Full Text] [Related]
4. Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models. Ming C; Viassolo V; Probst-Hensch N; Chappuis PO; Dinov ID; Katapodi MC Breast Cancer Res; 2019 Jun; 21(1):75. PubMed ID: 31221197 [TBL] [Abstract][Full Text] [Related]
5. Breast cancer prediction using different machine learning methods applying multi factors. Nazari E; Naderi H; Tabadkani M; ArefNezhad R; Farzin AH; Dashtiahangar M; Khazaei M; Ferns GA; Mehrabian A; Tabesh H; Avan A J Cancer Res Clin Oncol; 2023 Dec; 149(19):17133-17146. PubMed ID: 37773467 [TBL] [Abstract][Full Text] [Related]
6. TARGETING UNDERREPRESENTED POPULATIONS IN PRECISION MEDICINE: A FEDERATED TRANSFER LEARNING APPROACH. Li BS; Cai T; Duan R Ann Appl Stat; 2023 Dec; 17(4):2970-2992. PubMed ID: 39314265 [TBL] [Abstract][Full Text] [Related]
7. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage. Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794 [TBL] [Abstract][Full Text] [Related]
8. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. Alaa AM; Bolton T; Di Angelantonio E; Rudd JHF; van der Schaar M PLoS One; 2019; 14(5):e0213653. PubMed ID: 31091238 [TBL] [Abstract][Full Text] [Related]
9. Breast cancer risk prediction in African women using Random Forest Classifier. Macaulay BO; Aribisala BS; Akande SA; Akinnuwesi BA; Olabanjo OA Cancer Treat Res Commun; 2021; 28():100396. PubMed ID: 34049004 [TBL] [Abstract][Full Text] [Related]
10. An Assessment of the Predictive Performance of Current Machine Learning-Based Breast Cancer Risk Prediction Models: Systematic Review. Gao Y; Li S; Jin Y; Zhou L; Sun S; Xu X; Li S; Yang H; Zhang Q; Wang Y JMIR Public Health Surveill; 2022 Dec; 8(12):e35750. PubMed ID: 36426919 [TBL] [Abstract][Full Text] [Related]
11. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network. Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809 [TBL] [Abstract][Full Text] [Related]
12. Prediction of Suicidal Behaviors in the Middle-aged Population: Machine Learning Analyses of UK Biobank. Wang J; Qiu J; Zhu T; Zeng Y; Yang H; Shang Y; Yin J; Sun Y; Qu Y; Valdimarsdóttir UA; Song H JMIR Public Health Surveill; 2023 Feb; 9():e43419. PubMed ID: 36805366 [TBL] [Abstract][Full Text] [Related]
13. Machine learning models in breast cancer survival prediction. Montazeri M; Montazeri M; Montazeri M; Beigzadeh A Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558 [TBL] [Abstract][Full Text] [Related]
14. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
15. Genetic variants demonstrating flip-flop phenomenon and breast cancer risk prediction among women of African ancestry. Wang S; Qian F; Zheng Y; Ogundiran T; Ojengbede O; Zheng W; Blot W; Nathanson KL; Hennis A; Nemesure B; Ambs S; Olopade OI; Huo D Breast Cancer Res Treat; 2018 Apr; 168(3):703-712. PubMed ID: 29302764 [TBL] [Abstract][Full Text] [Related]
16. Developing an Explainable Machine Learning-Based Personalised Dementia Risk Prediction Model: A Transfer Learning Approach With Ensemble Learning Algorithms. Danso SO; Zeng Z; Muniz-Terrera G; Ritchie CW Front Big Data; 2021; 4():613047. PubMed ID: 34124650 [TBL] [Abstract][Full Text] [Related]
17. A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction. Turki T; Wei Z; Wang JTL J Bioinform Comput Biol; 2018 Jun; 16(3):1840014. PubMed ID: 29945499 [TBL] [Abstract][Full Text] [Related]
18. Generalization of diffusion magnetic resonance imaging-based brain age prediction model through transfer learning. Chen CL; Hsu YC; Yang LY; Tung YH; Luo WB; Liu CM; Hwang TJ; Hwu HG; Isaac Tseng WY Neuroimage; 2020 Aug; 217():116831. PubMed ID: 32438048 [TBL] [Abstract][Full Text] [Related]
19. Transfer Learning Strategy Based on Unsupervised Learning and Ensemble Learning for Breast Cancer Molecular Subtype Prediction Using Dynamic Contrast-Enhanced MRI. Sun R; Hou X; Li X; Xie Y; Nie S J Magn Reson Imaging; 2022 May; 55(5):1518-1534. PubMed ID: 34668601 [TBL] [Abstract][Full Text] [Related]
20. KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features. Qi H; Song X; Liu S; Zhang Y; Wong KKL Comput Methods Programs Biomed; 2023 Apr; 231():107378. PubMed ID: 36731312 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]