BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36540984)

  • 21. Interactive gene identification for cancer subtyping based on multi-omics clustering.
    Ye X; Shi T; Cui Y; Sakurai T
    Methods; 2023 Mar; 211():61-67. PubMed ID: 36804215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data.
    Wang W; Baladandayuthapani V; Morris JS; Broom BM; Manyam G; Do KA
    Bioinformatics; 2013 Jan; 29(2):149-59. PubMed ID: 23142963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MultiBaC: A strategy to remove batch effects between different omic data types.
    Ugidos M; Tarazona S; Prats-Montalbán JM; Ferrer A; Conesa A
    Stat Methods Med Res; 2020 Oct; 29(10):2851-2864. PubMed ID: 32131696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of signaling cross-talks contributing to acquired drug resistance in breast cancer cells by Bayesian statistical modeling.
    Azad AK; Lawen A; Keith JM
    BMC Syst Biol; 2015 Jan; 9():2. PubMed ID: 25599599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bayesian semi-nonnegative matrix tri-factorization to identify pathways associated with cancer phenotypes.
    Park S; Kar N; Cheong JH; Hwang TH
    Pac Symp Biocomput; 2020; 25():427-438. PubMed ID: 31797616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrating multiomics and prior knowledge: a study of the Graphnet penalty impact.
    Chegraoui H; Guillemot V; Rebei A; Gloaguen A; Grill J; Philippe C; Frouin V
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37490467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Bayesian integrative approach for multi-platform genomic data: A kidney cancer case study.
    Chekouo T; Stingo FC; Doecke JD; Do KA
    Biometrics; 2017 Jun; 73(2):615-624. PubMed ID: 27669160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying key multifunctional components shared by critical cancer and normal liver pathways via SparseGMM.
    Bakr S; Brennan K; Mukherjee P; Argemi J; Hernaez M; Gevaert O
    Cell Rep Methods; 2023 Jan; 3(1):100392. PubMed ID: 36814838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NExUS: Bayesian simultaneous network estimation across unequal sample sizes.
    Das P; Peterson CB; Do KA; Akbani R; Baladandayuthapani V
    Bioinformatics; 2020 Feb; 36(3):798-804. PubMed ID: 31504175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating multi-platform genomic data using hierarchical Bayesian relevance vector machines.
    Srivastava S; Wang W; Manyam G; Ordonez C; Baladandayuthapani V
    EURASIP J Bioinform Syst Biol; 2013 Jun; 2013(1):9. PubMed ID: 23809014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Multiomics Approaches in Endometrial Cancer.
    Boroń D; Zmarzły N; Wierzbik-Strońska M; Rosińczuk J; Mieszczański P; Grabarek BO
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial transformation of multi-omics data unlocks novel insights into cancer biology.
    Sokač M; Kjær A; Dyrskjøt L; Haibe-Kains B; Jwl Aerts H; Birkbak NJ
    Elife; 2023 Sep; 12():. PubMed ID: 37669321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery.
    Koh HWL; Fermin D; Vogel C; Choi KP; Ewing RM; Choi H
    NPJ Syst Biol Appl; 2019; 5():22. PubMed ID: 31312515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A hierarchical spike-and-slab model for pan-cancer survival using pan-omic data.
    Samorodnitsky S; Hoadley KA; Lock EF
    BMC Bioinformatics; 2022 Jun; 23(1):235. PubMed ID: 35710340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving cancer driver gene identification using multi-task learning on graph convolutional network.
    Peng W; Tang Q; Dai W; Chen T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34643232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of druggable cancer driver genes amplified across TCGA datasets.
    Chen Y; McGee J; Chen X; Doman TN; Gong X; Zhang Y; Hamm N; Ma X; Higgs RE; Bhagwat SV; Buchanan S; Peng SB; Staschke KA; Yadav V; Yue Y; Kouros-Mehr H
    PLoS One; 2014; 9(5):e98293. PubMed ID: 24874471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CustOmics: A versatile deep-learning based strategy for multi-omics integration.
    Benkirane H; Pradat Y; Michiels S; Cournède PH
    PLoS Comput Biol; 2023 Mar; 19(3):e1010921. PubMed ID: 36877736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IntOMICS: A Bayesian Framework for Reconstructing Regulatory Networks Using Multi-Omics Data.
    Pačínková A; Popovici V
    J Comput Biol; 2023 May; 30(5):569-574. PubMed ID: 36961919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data.
    Wang RH; Wang J; Li SC
    Nucleic Acids Res; 2023 Aug; 51(15):e81. PubMed ID: 37403780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.