These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36541048)

  • 1. Nanostructured mixed transition metal oxide spinels for supercapacitor applications.
    Deka S
    Dalton Trans; 2023 Jan; 52(4):839-856. PubMed ID: 36541048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional self-supported metal oxides for advanced energy storage.
    Ellis BL; Knauth P; Djenizian T
    Adv Mater; 2014 Jun; 26(21):3368-97. PubMed ID: 24700719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments.
    Liang R; Du Y; Xiao P; Cheng J; Yuan S; Chen Y; Yuan J; Chen J
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects.
    Salunkhe RR; Kaneti YV; Yamauchi Y
    ACS Nano; 2017 Jun; 11(6):5293-5308. PubMed ID: 28613076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors.
    Malavekar D; Pujari S; Jang S; Bachankar S; Kim JH
    Small; 2024 Apr; ():e2312179. PubMed ID: 38593336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed transition-metal oxides: design, synthesis, and energy-related applications.
    Yuan C; Wu HB; Xie Y; Lou XW
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1488-504. PubMed ID: 24382683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercapacitors: An Efficient Way for Energy Storage Application.
    Czagany M; Hompoth S; Keshri AK; Pandit N; Galambos I; Gacsi Z; Baumli P
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal Oxide Nanosheet: Synthesis Approaches and Applications in Energy Storage Devices (Batteries, Fuel Cells, and Supercapacitors).
    Das A; Peu SD; Hossain MS; Akanda MAM; Salah MM; Akanda MMH; Rahman M; Das BK
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Metal Chalcogenides (MX;
    Theerthagiri J; Karuppasamy K; Durai G; Rana AUHS; Arunachalam P; Sangeetha K; Kuppusami P; Kim HS
    Nanomaterials (Basel); 2018 Apr; 8(4):. PubMed ID: 29671823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured Mn-based oxides for electrochemical energy storage and conversion.
    Zhang K; Han X; Hu Z; Zhang X; Tao Z; Chen J
    Chem Soc Rev; 2015 Feb; 44(3):699-728. PubMed ID: 25200459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.
    Park MS; Kim J; Kim KJ; Lee JW; Kim JH; Yamauchi Y
    Phys Chem Chem Phys; 2015 Dec; 17(46):30963-77. PubMed ID: 26549729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of Nanostructured WO
    Mineo G; Scuderi M; Pezzotti Escobar G; Mirabella S; Bruno E
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors.
    Asghar A; Khan K; Hakami O; Alamier WM; Ali SK; Zelai T; Rashid MS; Tareen AK; Al-Harthi EA
    Front Chem; 2024; 12():1402563. PubMed ID: 38831913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured Titanium Nitride and Its Composites as High-Performance Supercapacitor Electrode Material.
    Parveen N; Ansari MO; Ansari SA; Kumar P
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.
    Zhi M; Xiang C; Li J; Li M; Wu N
    Nanoscale; 2013 Jan; 5(1):72-88. PubMed ID: 23151936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Transition-metal Oxide Electrodes: Understanding the Role of Surface Engineering for High Energy Density Supercapacitors.
    Tomboc GM; Tesfaye Gadisa B; Jun M; Chaudhari NK; Kim H; Lee K
    Chem Asian J; 2020 Jun; 15(11):1628-1647. PubMed ID: 32301268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
    Salunkhe RR; Lee YH; Chang KH; Li JM; Simon P; Tang J; Torad NL; Hu CC; Yamauchi Y
    Chemistry; 2014 Oct; 20(43):13838-52. PubMed ID: 25251360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.