These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 36541048)

  • 21. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
    Salunkhe RR; Lee YH; Chang KH; Li JM; Simon P; Tang J; Torad NL; Hu CC; Yamauchi Y
    Chemistry; 2014 Oct; 20(43):13838-52. PubMed ID: 25251360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.
    Jiang J; Li Y; Liu J; Huang X; Yuan C; Lou XW
    Adv Mater; 2012 Oct; 24(38):5166-80. PubMed ID: 22912066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials.
    Jeong GH; Baek S; Lee S; Kim SW
    Chem Asian J; 2016 Apr; 11(7):949-64. PubMed ID: 27061763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic-layer-deposition-assisted formation of carbon nanoflakes on metal oxides and energy storage application.
    Guan C; Zeng Z; Li X; Cao X; Fan Y; Xia X; Pan G; Zhang H; Fan HJ
    Small; 2014 Jan; 10(2):300-7. PubMed ID: 23922279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review on Recent Progress in the Development of Tungsten Oxide Based Electrodes for Electrochemical Energy Storage.
    Shinde PA; Jun SC
    ChemSusChem; 2020 Jan; 13(1):11-38. PubMed ID: 31605458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MOF assistance synthesis of nanoporous double-shelled CuCo
    Saleki F; Mohammadi A; Moosavifard SE; Hafizi A; Rahimpour MR
    J Colloid Interface Sci; 2019 Nov; 556():83-91. PubMed ID: 31426012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid-State Preparation of Metal and Metal Oxides Nanostructures and Their Application in Environmental Remediation.
    Diaz C; Valenzuela ML; Laguna-Bercero MÁ
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Facile preparation of a highly efficient NiZn
    Anil Kumar Y; Dasha Kumar K; Kim HJ
    Dalton Trans; 2020 Mar; 49(11):3622-3629. PubMed ID: 32129410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors.
    Cherusseri J; Sambath Kumar K; Choudhary N; Nagaiah N; Jung Y; Roy T; Thomas J
    Nanotechnology; 2019 May; 30(20):202001. PubMed ID: 30754027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overview of transition metal-based composite materials for supercapacitor electrodes.
    Cui M; Meng X
    Nanoscale Adv; 2020 Dec; 2(12):5516-5528. PubMed ID: 36133879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.
    Yan L; Rui X; Chen G; Xu W; Zou G; Luo H
    Nanoscale; 2016 Apr; 8(16):8443-65. PubMed ID: 27074412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal oxide-based supercapacitors: progress and prospectives.
    An C; Zhang Y; Guo H; Wang Y
    Nanoscale Adv; 2019 Dec; 1(12):4644-4658. PubMed ID: 36133113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of novel Co
    Reddy NR; Reddy PM; Mandal TK; Reddy KR; Shetti NP; Saleh TA; Joo SW; Aminabhavi TM
    J Environ Manage; 2021 Nov; 298():113484. PubMed ID: 34391101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesoporous Transition Metal Oxides for Supercapacitors.
    Wang Y; Guo J; Wang T; Shao J; Wang D; Yang YW
    Nanomaterials (Basel); 2015 Oct; 5(4):1667-1689. PubMed ID: 28347088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes.
    Fan X; Zhong C; Liu J; Ding J; Deng Y; Han X; Zhang L; Hu W; Wilkinson DP; Zhang J
    Chem Rev; 2022 Dec; 122(23):17155-17239. PubMed ID: 36239919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal Oxide and Hydroxide-Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Need-Tailored Devices.
    Nguyen T; Montemor MF
    Adv Sci (Weinh); 2019 May; 6(9):1801797. PubMed ID: 31065518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inorganic nanostructured materials for high performance electrochemical supercapacitors.
    Liu S; Sun S; You XZ
    Nanoscale; 2014 Feb; 6(4):2037-45. PubMed ID: 24384725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes.
    Jiang H; Ma J; Li C
    Adv Mater; 2012 Aug; 24(30):4197-202. PubMed ID: 23030034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into the interfacial nanostructuring of NiCo
    Kumbhar VS; Chodankar NR; Lee K; Kim DH
    J Colloid Interface Sci; 2019 Dec; 557():423-437. PubMed ID: 31539839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical Deposition for Cultivating Nano- and Microstructured Electroactive Materials for Supercapacitors: Recent Developments and Future Perspectives.
    Kumar SA; Sahoo S; Laxminarayana GK; Rout CS
    Small; 2024 Jun; ():e2402087. PubMed ID: 38845531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.