These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36541048)

  • 61. Design of Carbon/Metal Oxide Hybrids for Electrochemical Energy Storage.
    Fleischmann S; Tolosa A; Presser V
    Chemistry; 2018 Aug; 24(47):12143-12153. PubMed ID: 29672971
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Two-Dimensional Molecular Sheets of Transition Metal Oxides toward Wearable Energy Storage.
    Jiang K; Xiong P; Ji J; Zhu J; Ma R; Sasaki T; Geng F
    Acc Chem Res; 2020 Oct; 53(10):2443-2455. PubMed ID: 33003700
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Current Trends and Promising Electrode Materials in Micro-Supercapacitor Printing.
    Simonenko TL; Simonenko NP; Gorobtsov PY; Simonenko EP; Kuznetsov NT
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763411
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Flexible free-standing Ni-Mn oxide antenna decorated CNT/nanofiber membrane for high-volumetric capacitance supercapacitors.
    Fernando N; Chinnappan A; Aziz A; Abdelkader A; Ramakrishna S; Welland ME
    Nanoscale; 2021 Nov; 13(45):19038-19048. PubMed ID: 34757347
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability.
    Guan C; Liu J; Wang Y; Mao L; Fan Z; Shen Z; Zhang H; Wang J
    ACS Nano; 2015 May; 9(5):5198-207. PubMed ID: 25868870
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts.
    Cheng F; Shen J; Peng B; Pan Y; Tao Z; Chen J
    Nat Chem; 2011 Jan; 3(1):79-84. PubMed ID: 21160522
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Flexible supercapacitor electrodes using metal-organic frameworks.
    Cherusseri J; Pandey D; Sambath Kumar K; Thomas J; Zhai L
    Nanoscale; 2020 Sep; 12(34):17649-17662. PubMed ID: 32820760
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion.
    Yang S; Bachman RE; Feng X; Müllen K
    Acc Chem Res; 2013 Jan; 46(1):116-28. PubMed ID: 23110511
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.
    Zhao X; Sánchez BM; Dobson PJ; Grant PS
    Nanoscale; 2011 Mar; 3(3):839-55. PubMed ID: 21253650
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.
    Lv Q; Wang S; Sun H; Luo J; Xiao J; Xiao J; Xiao F; Wang S
    Nano Lett; 2016 Jan; 16(1):40-7. PubMed ID: 26599168
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.
    Liu X; Huang JQ; Zhang Q; Mai L
    Adv Mater; 2017 May; 29(20):. PubMed ID: 28160327
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Oxide nanostructures hyperbranched with thin and hollow metal shells for high-performance nanostructured battery electrodes.
    Xia X; Xiong Q; Zhang Y; Tu J; Ng CF; Fan HJ
    Small; 2014 Jun; 10(12):2419-28. PubMed ID: 24610815
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials.
    Li Q; Horn M; Wang Y; MacLeod J; Motta N; Liu J
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30818843
    [TBL] [Abstract][Full Text] [Related]  

  • 74. ZnO and MXenes as electrode materials for supercapacitor devices.
    Ammar AU; Yildirim ID; Bakan F; Erdem E
    Beilstein J Nanotechnol; 2021; 12():49-57. PubMed ID: 33520574
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.
    Jiang J; Li Y; Liu J; Huang X
    Nanoscale; 2011 Jan; 3(1):45-58. PubMed ID: 20978657
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Promising Potential of Gallium Based Liquid Metals for Energy Storage.
    Rehman WU; Manj RZA; Ma Y; Yang J
    Chempluschem; 2024 Aug; 89(8):e202300767. PubMed ID: 38696273
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Resent Development of Binder-Free Electrodes of Transition Metal Oxides and Nanohybrids for High Performance Supercapacitors - A Review.
    Parveen N
    Chem Rec; 2024 Jan; 24(1):e202300065. PubMed ID: 37194959
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.
    Li X; Elshahawy AM; Guan C; Wang J
    Small; 2017 Oct; 13(39):. PubMed ID: 28834280
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.
    Yu SH; Lee SH; Lee DJ; Sung YE; Hyeon T
    Small; 2016 Apr; 12(16):2146-72. PubMed ID: 26627913
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multimetallic transition metal phosphide nanostructures for supercapacitors and electrochemical water splitting.
    Zhang N; Amorim I; Liu L
    Nanotechnology; 2022 Aug; 33(43):. PubMed ID: 35820404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.