These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36541054)
1. Exploratory pharmacovigilance with machine learning in big patient data: A focused scoping review. Kaas-Hansen BS; Gentile S; Caioli A; Andersen SE Basic Clin Pharmacol Toxicol; 2023 Mar; 132(3):233-241. PubMed ID: 36541054 [TBL] [Abstract][Full Text] [Related]
2. Machine learning models to detect and predict patient safety events using electronic health records: A systematic review. Deimazar G; Sheikhtaheri A Int J Med Inform; 2023 Dec; 180():105246. PubMed ID: 37837710 [TBL] [Abstract][Full Text] [Related]
3. Artificial Intelligence Based on Machine Learning in Pharmacovigilance: A Scoping Review. Kompa B; Hakim JB; Palepu A; Kompa KG; Smith M; Bain PA; Woloszynek S; Painter JL; Bate A; Beam AL Drug Saf; 2022 May; 45(5):477-491. PubMed ID: 35579812 [TBL] [Abstract][Full Text] [Related]
4. IL-4/13 Blockade and sleep-related adverse drug reactions in over 37,000 Dupilumab reports from the World Health Organization Individual Case Safety reporting pharmacovigilance database (VigiBase™): a big data and machine learning analysis. Alroobaea R; Rubaiee S; Hanbazazah AS; Jahrami H; Garbarino S; Damiani G; Wu J; Bragazzi NL Eur Rev Med Pharmacol Sci; 2022 Jun; 26(11):4074-4081. PubMed ID: 35731078 [TBL] [Abstract][Full Text] [Related]
5. The Use of Artificial Intelligence in Pharmacovigilance: A Systematic Review of the Literature. Salas M; Petracek J; Yalamanchili P; Aimer O; Kasthuril D; Dhingra S; Junaid T; Bostic T Pharmaceut Med; 2022 Oct; 36(5):295-306. PubMed ID: 35904529 [TBL] [Abstract][Full Text] [Related]
6. Identifying undetected dementia in UK primary care patients: a retrospective case-control study comparing machine-learning and standard epidemiological approaches. Ford E; Rooney P; Oliver S; Hoile R; Hurley P; Banerjee S; van Marwijk H; Cassell J BMC Med Inform Decis Mak; 2019 Dec; 19(1):248. PubMed ID: 31791325 [TBL] [Abstract][Full Text] [Related]
7. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
8. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Shillan D; Sterne JAC; Champneys A; Gibbison B Crit Care; 2019 Aug; 23(1):284. PubMed ID: 31439010 [TBL] [Abstract][Full Text] [Related]
9. An Automated Detection System of Drug-Drug Interactions from Electronic Patient Records Using Big Data Analytics. Bouzillé G; Morival C; Westerlynck R; Lemordant P; Chazard E; Lecorre P; Busnel Y; Cuggia M Stud Health Technol Inform; 2019 Aug; 264():45-49. PubMed ID: 31437882 [TBL] [Abstract][Full Text] [Related]
10. Identifying Cancer Targets Based on Machine Learning Methods via Chou's 5-steps Rule and General Pseudo Components. Liang R; Xie J; Zhang C; Zhang M; Huang H; Huo H; Cao X; Niu B Curr Top Med Chem; 2019; 19(25):2301-2317. PubMed ID: 31622219 [TBL] [Abstract][Full Text] [Related]
11. Learning temporal weights of clinical events using variable importance. Zhao J; Henriksson A BMC Med Inform Decis Mak; 2016 Jul; 16 Suppl 2(Suppl 2):71. PubMed ID: 27459993 [TBL] [Abstract][Full Text] [Related]
12. Predictive modeling of structured electronic health records for adverse drug event detection. Zhao J; Henriksson A; Asker L; Boström H BMC Med Inform Decis Mak; 2015; 15 Suppl 4(Suppl 4):S1. PubMed ID: 26606038 [TBL] [Abstract][Full Text] [Related]
13. Editorial Commentary: Big Data and Machine Learning in Medicine. Hohmann E Arthroscopy; 2022 Mar; 38(3):848-849. PubMed ID: 35248233 [TBL] [Abstract][Full Text] [Related]
14. Incremental Ant-Miner Classifier for Online Big Data Analytics. Al-Dawsari A; Al-Turaiki I; Kurdi H Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336394 [TBL] [Abstract][Full Text] [Related]
15. Leveraging Generative AI for Drug Safety and Pharmacovigilance. Mishra HP; Gupta R Curr Rev Clin Exp Pharmacol; 2024 Sep; ():. PubMed ID: 39238375 [TBL] [Abstract][Full Text] [Related]
16. A machine learning-based framework to identify type 2 diabetes through electronic health records. Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371 [TBL] [Abstract][Full Text] [Related]
17. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies. Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313 [TBL] [Abstract][Full Text] [Related]
18. Prediction of antischistosomal small molecules using machine learning in the era of big data. Kwofie SK; Agyenkwa-Mawuli K; Broni E; Miller Iii WA; Wilson MD Mol Divers; 2022 Jun; 26(3):1597-1607. PubMed ID: 34351547 [TBL] [Abstract][Full Text] [Related]
19. Artificial Intelligence in Pharmacovigilance: An Introduction to Terms, Concepts, Applications, and Limitations. Aronson JK Drug Saf; 2022 May; 45(5):407-418. PubMed ID: 35579806 [TBL] [Abstract][Full Text] [Related]
20. [A Novel Approach to Analyze the Factors Affecting Adverse Drug Reactions by Combination of Electronic Medical Record Database and Machine Learning Method]. Imai S Yakugaku Zasshi; 2023; 143(6):485-489. PubMed ID: 37258180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]