These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 36541062)
1. Spectroscopic Properties of a Biologically Relevant [Fe Kass D; Yao S; Krause KB; Corona T; Richter L; Braun T; Mebs S; Haumann M; Dau H; Lohmiller T; Limberg C; Drieß M; Ray K Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202209437. PubMed ID: 36541062 [TBL] [Abstract][Full Text] [Related]
2. An Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Shu L; Nesheim JC; Kauffmann K; Münck E; Lipscomb JD; Que L Science; 1997 Jan; 275(5299):515-8. PubMed ID: 8999792 [TBL] [Abstract][Full Text] [Related]
3. Explorations of the nonheme high-valent iron-oxo landscape: crystal structure of a synthetic complex with an [FeIV2(μ-O) Rohde GT; Xue G; Que L Faraday Discuss; 2022 May; 234(0):109-128. PubMed ID: 35171169 [TBL] [Abstract][Full Text] [Related]
4. A synthetic precedent for the [FeIV2(mu-O)2] diamond core proposed for methane monooxygenase intermediate Q. Xue G; Wang D; De Hont R; Fiedler AT; Shan X; Münck E; Que L Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20713-8. PubMed ID: 18093922 [TBL] [Abstract][Full Text] [Related]
5. Bis(mu-oxo)dimetal "diamond" cores in copper and iron complexes relevant to biocatalysis. Que L; Tolman WB Angew Chem Int Ed Engl; 2002 Apr; 41(7):1114-37. PubMed ID: 12491240 [TBL] [Abstract][Full Text] [Related]
6. Substrate-triggered activation of a synthetic [Fe2(μ-O)2] diamond core for C-H bond cleavage. Xue G; Pokutsa A; Que L J Am Chem Soc; 2011 Oct; 133(41):16657-67. PubMed ID: 21899336 [TBL] [Abstract][Full Text] [Related]
7. Spectroscopic and computational studies of (mu-oxo)(mu-1,2-peroxo)diiron(III) complexes of relevance to nonheme diiron oxygenase intermediates. Fiedler AT; Shan X; Mehn MP; Kaizer J; Torelli S; Frisch JR; Kodera M; Que L J Phys Chem A; 2008 Dec; 112(50):13037-44. PubMed ID: 18811130 [TBL] [Abstract][Full Text] [Related]
8. A 2.8 Å Fe-Fe separation in the Fe2(III/IV) intermediate, X, from Escherichia coli ribonucleotide reductase. Dassama LM; Silakov A; Krest CM; Calixto JC; Krebs C; Bollinger JM; Green MT J Am Chem Soc; 2013 Nov; 135(45):16758-61. PubMed ID: 24094084 [TBL] [Abstract][Full Text] [Related]
10. A Synthetic Model for the Possible Fe Mikata Y; Aono Y; Yamamoto C; Nakayama H; Matsumoto A; Kotegawa F; Harada M; Katano H; Kobayashi Y; Yanagisawa S; Kubo M; Kajiwara A; Kodera M Inorg Chem; 2022 Jan; 61(2):786-790. PubMed ID: 34822245 [TBL] [Abstract][Full Text] [Related]
11. Sc Banerjee S; Draksharapu A; Crossland PM; Fan R; Guo Y; Swart M; Que L J Am Chem Soc; 2020 Mar; 142(9):4285-4297. PubMed ID: 32017545 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of a dihydroxo-bridged iron(III,III)(μ-OH)2 diamond core derived from dioxygen. Coggins MK; Toledo S; Kovacs JA Inorg Chem; 2013 Dec; 52(23):13325-31. PubMed ID: 24229319 [TBL] [Abstract][Full Text] [Related]
13. Synthetic analogue of the [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core of soluble methane monooxygenase hydroxylase via synthesis and dioxygen reactivity of carboxylate-bridged diiron(II) complexes. Lee D; Lippard SJ Inorg Chem; 2002 Feb; 41(4):827-37. PubMed ID: 11849083 [TBL] [Abstract][Full Text] [Related]
14. Mössbauer and DFT study of the ferromagnetically coupled diiron(IV) precursor to a complex with an Fe(IV)(2)O(2) diamond core. Martinho M; Xue G; Fiedler AT; Que L; Bominaar EL; Münck E J Am Chem Soc; 2009 Apr; 131(16):5823-30. PubMed ID: 19338307 [TBL] [Abstract][Full Text] [Related]
15. High-Energy-Resolution Fluorescence-Detected X-ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase. Castillo RG; Banerjee R; Allpress CJ; Rohde GT; Bill E; Que L; Lipscomb JD; DeBeer S J Am Chem Soc; 2017 Dec; 139(49):18024-18033. PubMed ID: 29136468 [TBL] [Abstract][Full Text] [Related]
16. Modeling the syn disposition of nitrogen donors in non-heme diiron enzymes. Synthesis, characterization, and hydrogen peroxide reactivity of diiron(III) complexes with the syn N-donor ligand H2BPG2DEV. Friedle S; Kodanko JJ; Morys AJ; Hayashi T; Moënne-Loccoz P; Lippard SJ J Am Chem Soc; 2009 Oct; 131(40):14508-20. PubMed ID: 19757795 [TBL] [Abstract][Full Text] [Related]
17. Structural characterization of the peroxodiiron(III) intermediate generated during oxygen activation by the W48A/D84E variant of ribonucleotide reductase protein R2 from Escherichia coli. Baldwin J; Krebs C; Saleh L; Stelling M; Huynh BH; Bollinger JM; Riggs-Gelasco P Biochemistry; 2003 Nov; 42(45):13269-79. PubMed ID: 14609338 [TBL] [Abstract][Full Text] [Related]
18. Highly Reactive Co Li Y; Handunneththige S; Farquhar ER; Guo Y; Talipov MR; Li F; Wang D J Am Chem Soc; 2019 Dec; 141(51):20127-20136. PubMed ID: 31794198 [TBL] [Abstract][Full Text] [Related]
19. Evaluating the identity and diiron core transformations of a (μ-oxo)diiron(III) complex supported by electron-rich tris(pyridyl-2-methyl)amine ligands. Do LH; Xue G; Que L; Lippard SJ Inorg Chem; 2012 Feb; 51(4):2393-402. PubMed ID: 22264120 [TBL] [Abstract][Full Text] [Related]
20. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]