These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36541226)

  • 1. How machine learning can accelerate electrocatalysis discovery and optimization.
    Steinmann SN; Wang Q; Seh ZW
    Mater Horiz; 2023 Feb; 10(2):393-406. PubMed ID: 36541226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction.
    Li J; Wu N; Zhang J; Wu HH; Pan K; Wang Y; Liu G; Liu X; Yao Z; Zhang Q
    Nanomicro Lett; 2023 Oct; 15(1):227. PubMed ID: 37831203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery.
    Mai H; Le TC; Chen D; Winkler DA; Caruso RA
    Chem Rev; 2022 Aug; 122(16):13478-13515. PubMed ID: 35862246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning: A New Paradigm in Computational Electrocatalysis.
    Zhang X; Tian Y; Chen L; Hu X; Zhou Z
    J Phys Chem Lett; 2022 Sep; 13(34):7920-7930. PubMed ID: 35980765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic and kinetic modeling of electrocatalytic reactions using a first-principles approach.
    M V; Singh S; Bononi F; Andreussi O; Karmodak N
    J Chem Phys; 2023 Sep; 159(11):. PubMed ID: 37728202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Modeling of Physical Properties of Nanoporous Frameworks: Predicting Mechanical, Thermal, and Adsorption Behavior.
    Hardiagon A; Coudert FX
    Acc Chem Res; 2024 Jun; 57(11):1620-1632. PubMed ID: 38752454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning of Reactive Potentials.
    Yang Y; Zhang S; Ranasinghe KD; Isayev O; Roitberg AE
    Annu Rev Phys Chem; 2024 Jun; 75(1):371-395. PubMed ID: 38941524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors.
    Andersen M; Reuter K
    Acc Chem Res; 2021 Jun; 54(12):2741-2749. PubMed ID: 34080415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-Driven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts.
    Li H; Jiao Y; Davey K; Qiao SZ
    Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202216383. PubMed ID: 36509704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Methods in Heterogeneous Catalysis.
    Chen BWJ; Xu L; Mavrikakis M
    Chem Rev; 2021 Jan; 121(2):1007-1048. PubMed ID: 33350813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning transferable atomic forces for large systems from underconverged molecular fragments.
    Herbold M; Behler J
    Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward autonomous design and synthesis of novel inorganic materials.
    Szymanski NJ; Zeng Y; Huo H; Bartel CJ; Kim H; Ceder G
    Mater Horiz; 2021 Aug; 8(8):2169-2198. PubMed ID: 34846423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Shell on Active Nanocatalyst for Stable Electrocatalysis.
    Yoo JM; Shin H; Chung DY; Sung YE
    Acc Chem Res; 2022 May; 55(9):1278-1289. PubMed ID: 35436084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Fourth-Generation Machine Learning Potentials by Electrostatic Embedding.
    Ko TW; Finkler JA; Goedecker S; Behler J
    J Chem Theory Comput; 2023 Jun; 19(12):3567-3579. PubMed ID: 37289440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated workflow for computation of redox potentials, acidity constants, and solvation free energies accelerated by machine learning.
    Wang F; Cheng J
    J Chem Phys; 2022 Jul; 157(2):024103. PubMed ID: 35840372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Throughput Methods in the Synthesis, Characterization, and Optimization of Porous Materials.
    Clayson IG; Hewitt D; Hutereau M; Pope T; Slater B
    Adv Mater; 2020 Nov; 32(44):e2002780. PubMed ID: 32954550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Self-Reconstruction of Catalysts in Electrocatalysis.
    Jiang H; He Q; Zhang Y; Song L
    Acc Chem Res; 2018 Nov; 51(11):2968-2977. PubMed ID: 30375841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput experimentation meets artificial intelligence: a new pathway to catalyst discovery.
    McCullough K; Williams T; Mingle K; Jamshidi P; Lauterbach J
    Phys Chem Chem Phys; 2020 May; 22(20):11174-11196. PubMed ID: 32393932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.