These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 3654142)
1. Lens protein composition, glycation and high molecular weight aggregation in aging rats. Swamy MS; Abraham EC Invest Ophthalmol Vis Sci; 1987 Oct; 28(10):1693-701. PubMed ID: 3654142 [TBL] [Abstract][Full Text] [Related]
2. Nonenzymatic glycosylation (glycation) of lens crystallins in diabetes and aging. Abraham EC; Swamy MS; Perry RE Prog Clin Biol Res; 1989; 304():123-39. PubMed ID: 2780679 [TBL] [Abstract][Full Text] [Related]
3. Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabetic rats. Perry RE; Swamy MS; Abraham EC Exp Eye Res; 1987 Feb; 44(2):269-82. PubMed ID: 3582512 [TBL] [Abstract][Full Text] [Related]
4. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat. Ranjan M; Nayak S; Rao BS Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392 [TBL] [Abstract][Full Text] [Related]
5. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
6. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
7. Characterization of water-insoluble proteins in normal and cataractous human lens. Kamei A Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364 [TBL] [Abstract][Full Text] [Related]
8. Differential glycation of rat alpha-, beta- and gamma-crystallins. Swamy MS; Abraham EC Exp Eye Res; 1991 Apr; 52(4):439-44. PubMed ID: 2037022 [TBL] [Abstract][Full Text] [Related]
9. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of lens crystallin glycation and high molecular weight aggregate formation by aspirin in vitro and in vivo. Swamy MS; Abraham EC Invest Ophthalmol Vis Sci; 1989 Jun; 30(6):1120-6. PubMed ID: 2525117 [TBL] [Abstract][Full Text] [Related]
11. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM). Ashida Y; Takeda T; Hosokawa M Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822 [TBL] [Abstract][Full Text] [Related]
12. NMR analyses of the cold cataract. II. Studies on protein solutions. Lerman S; Megaw JM; Gardner K; Ashley D; Long RC; Goldstein JH Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):99-105. PubMed ID: 6826319 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
14. Modifications of the water-insoluble human lens alpha-crystallins. Lund AL; Smith JB; Smith DL Exp Eye Res; 1996 Dec; 63(6):661-72. PubMed ID: 9068373 [TBL] [Abstract][Full Text] [Related]
15. Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro. Linetsky M; James HL; Ortwerth BJ Exp Eye Res; 1999 Aug; 69(2):239-48. PubMed ID: 10433859 [TBL] [Abstract][Full Text] [Related]
16. Acetyl- L -carnitine decreases glycation of lens proteins: in vitro studies. Swamy-Mruthinti S; Carter AL Exp Eye Res; 1999 Jul; 69(1):109-15. PubMed ID: 10375455 [TBL] [Abstract][Full Text] [Related]
17. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper. Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558 [TBL] [Abstract][Full Text] [Related]
18. On the composition and origin of the urea-soluble polypeptides of the U18666A cataract. Cenedella RJ; Augusteyn RC Curr Eye Res; 1990 Sep; 9(9):805-18. PubMed ID: 2245643 [TBL] [Abstract][Full Text] [Related]
19. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens. Fujii N; Awakura M; Takemoto L; Inomata M; Takata T; Fujii N; Saito T Mol Vis; 2003 Jul; 9():315-22. PubMed ID: 12847419 [TBL] [Abstract][Full Text] [Related]
20. Resistance of human betaB2-crystallin to in vivo modification. Zhang Z; David LL; Smith DL; Smith JB Exp Eye Res; 2001 Aug; 73(2):203-11. PubMed ID: 11446770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]