These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 3654142)
21. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins. Kodama T; Wong R; Takemoto L Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549 [TBL] [Abstract][Full Text] [Related]
22. Calcium activated proteolysis and protein modification in the U18666A cataract. Chandrasekher G; Cenedella RJ Exp Eye Res; 1993 Dec; 57(6):737-45. PubMed ID: 8150025 [TBL] [Abstract][Full Text] [Related]
23. Ageing and vision: structure, stability and function of lens crystallins. Bloemendal H; de Jong W; Jaenicke R; Lubsen NH; Slingsby C; Tardieu A Prog Biophys Mol Biol; 2004 Nov; 86(3):407-85. PubMed ID: 15302206 [TBL] [Abstract][Full Text] [Related]
24. Crystallin composition of human cataractous lens may be modulated by protein glycation. Ramalho J; Marques C; Pereira P; Mota MC Graefes Arch Clin Exp Ophthalmol; 1996 Aug; 234 Suppl 1():S232-8. PubMed ID: 8871180 [TBL] [Abstract][Full Text] [Related]
25. Prediction of possible sites for posttranslational modifications in human gamma crystallins: effect of glycation on the structure of human gamma-B-crystallin as analyzed by molecular modeling. Salim A; Bano A; Zaidi ZH Proteins; 2003 Nov; 53(2):162-73. PubMed ID: 14517968 [TBL] [Abstract][Full Text] [Related]
26. The presence of a human UV filter within the lens represents an oxidative stress. Berry Y; Truscott RJ Exp Eye Res; 2001 Apr; 72(4):411-21. PubMed ID: 11273669 [TBL] [Abstract][Full Text] [Related]
27. Glycation mediated lens crystallin aggregation and cross-linking by various sugars and sugar phosphates in vitro. Swamy MS; Tsai C; Abraham A; Abraham EC Exp Eye Res; 1993 Feb; 56(2):177-85. PubMed ID: 8462651 [TBL] [Abstract][Full Text] [Related]
28. Origin of urea-soluble protein in the selenite cataract. Role of beta-crystallin proteolysis and calpain II. David LL; Dickey BM; Shearer TR Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1148-56. PubMed ID: 3036741 [TBL] [Abstract][Full Text] [Related]
29. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis. Simpanya MF; Ansari RR; Suh KI; Leverenz VR; Giblin FJ Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4641-51. PubMed ID: 16303961 [TBL] [Abstract][Full Text] [Related]
30. Delay of diabetic cataract in rats by the antiglycating potential of cumin through modulation of alpha-crystallin chaperone activity. Kumar PA; Reddy PY; Srinivas PN; Reddy GB J Nutr Biochem; 2009 Jul; 20(7):553-62. PubMed ID: 18789666 [TBL] [Abstract][Full Text] [Related]
31. Relationship between lens protein glycation and membrane structure in human cataract. Scalbert P; Birlouez-Aragon I Exp Eye Res; 1993 Mar; 56(3):335-40. PubMed ID: 8472788 [TBL] [Abstract][Full Text] [Related]
32. Immunochemical detection of glycated lens crystallins and their circulating autoantibodies in human serum during aging. Ranjan M; Nayak S; Kosuri T; Rao BS Mol Vis; 2008; 14():2056-66. PubMed ID: 19023447 [TBL] [Abstract][Full Text] [Related]
33. Molecular evidence for the involvement of alpha crystallin in the colouration/crosslinking of crystallins in age-related nuclear cataract. Chen YC; Reid GE; Simpson RJ; Truscott RJ Exp Eye Res; 1997 Dec; 65(6):835-40. PubMed ID: 9441707 [TBL] [Abstract][Full Text] [Related]
34. [The immunological characterization and isoelectric focusing of water-soluble proteins in the lens related to aging (author's transl)]. Bours J; Hockwin O Klin Monbl Augenheilkd; 1977 Jan; 170(1):51-9. PubMed ID: 557701 [TBL] [Abstract][Full Text] [Related]
35. Protein oxidation and lens opacity in humans. Boscia F; Grattagliano I; Vendemiale G; Micelli-Ferrari T; Altomare E Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2461-5. PubMed ID: 10937554 [TBL] [Abstract][Full Text] [Related]
36. The glycation of bovine lens betaL-, betaS- and gamma-crystallins demonstrated by isoelectric focusing and lectin staining. Ahrend MH; Bours J Exp Eye Res; 1997 Nov; 65(5):711-5. PubMed ID: 9367651 [TBL] [Abstract][Full Text] [Related]
37. Studies on lens proteins. III. Variations in polypeptides of lens beta-crystallins. Mostafapour MK; Reddy VN Invest Ophthalmol Vis Sci; 1980 Sep; 19(9):1053-8. PubMed ID: 7409997 [TBL] [Abstract][Full Text] [Related]
38. Dehydroalanine crosslinks in human lens. Linetsky M; Hill JM; LeGrand RD; Hu F Exp Eye Res; 2004 Oct; 79(4):499-512. PubMed ID: 15381034 [TBL] [Abstract][Full Text] [Related]
39. Glycation of human lens proteins: preferential glycation of alpha A subunits. Swamy MS; Abraham A; Abraham EC Exp Eye Res; 1992 Mar; 54(3):337-45. PubMed ID: 1521566 [TBL] [Abstract][Full Text] [Related]
40. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry. Ma Z; Hanson SR; Lampi KJ; David LL; Smith DL; Smith JB Exp Eye Res; 1998 Jul; 67(1):21-30. PubMed ID: 9702175 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]