BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36541484)

  • 1. Curcumin nanoparticles combined with 3D printed bionic tumor models for breast cancer treatment.
    Su Y; Hu X; Kang Y; Zhang C; Cheng YY; Jiao Z; Nie Y; Song K
    Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36541484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized alginate-based 3D printed scaffolds as a model of patient derived breast cancer microenvironments in drug discovery.
    Svanström A; Rosendahl J; Salerno S; Leiva MC; Gregersson P; Berglin M; Bogestål Y; Lausmaa J; Oko A; Chinga-Carrasco G; Petronis S; Standoft S; Ståhlberg A; Håkansson J; Landberg G
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34030145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance.
    Hong S; Song JM
    Acta Biomater; 2022 Jan; 138():228-239. PubMed ID: 34718182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caffeic acid-grafted chitosan/sodium alginate/nanoclay-based multifunctional 3D-printed hybrid scaffolds for local drug release therapy after breast cancer surgery.
    Su Y; Liu Y; Hu X; Lu Y; Zhang J; Jin W; Liu W; Shu Y; Cheng YY; Li W; Nie Y; Pan B; Song K
    Carbohydr Polym; 2024 Jan; 324():121441. PubMed ID: 37985071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of curcumin-loaded gemini surfactant nanoparticles: Synthesis, characterization and evaluation of anticancer activity against human breast cancer cell lines.
    Karimpour M; Feizi MAH; Mahdavi M; Krammer B; Verwanger T; Najafi F; Babaei E
    Phytomedicine; 2019 Apr; 57():183-190. PubMed ID: 30776589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of inhibitory effects of geniposide on a tumor model of human breast cancer based on 3D printed Cs/Gel hybrid scaffold.
    Lv K; Zhu J; Zheng S; Jiao Z; Nie Y; Song F; Liu T; Song K
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111509. PubMed ID: 33321605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models.
    Lübtow MM; Nelke LC; Seifert J; Kühnemundt J; Sahay G; Dandekar G; Nietzer SL; Luxenhofer R
    J Control Release; 2019 Jun; 303():162-180. PubMed ID: 30981815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric Nano-Encapsulation of Curcumin Enhances its Anti-Cancer Activity in Breast (MDA-MB231) and Lung (A549) Cancer Cells Through Reduction in Expression of HIF-1α and Nuclear p65 (Rel A).
    Khan MN; Haggag YA; Lane ME; McCarron PA; Tambuwala MM
    Curr Drug Deliv; 2018 Feb; 15(2):286-295. PubMed ID: 29065834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment.
    Sorasitthiyanukarn FN; Muangnoi C; Ratnatilaka Na Bhuket P; Rojsitthisak P; Rojsitthisak P
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():178-190. PubMed ID: 30274050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D tumor microtissues as an in vitro testing platform for microenvironmentally-triggered drug delivery systems.
    Brancato V; Gioiella F; Profeta M; Imparato G; Guarnieri D; Urciuolo F; Melone P; Netti PA
    Acta Biomater; 2017 Jul; 57():47-58. PubMed ID: 28483691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair.
    Luo Y; Wei X; Wan Y; Lin X; Wang Z; Huang P
    Acta Biomater; 2019 Jul; 92():37-47. PubMed ID: 31108260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Nanocurcumin Therapy Using Annexin A2 Anitbody Improves Tumor Accumulation and Therapeutic Efficacy Against Highly Metastatic Breast Cancer.
    Mukerjee A; Ranjan AP; Vishwanatha JK
    J Biomed Nanotechnol; 2016 Jul; 12(7):1374-92. PubMed ID: 29336533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curcumin diethyl disuccinate encapsulated in chitosan/alginate nanoparticles for improvement of its
    Bhunchu S; Muangnoi C; Rojsitthisak P; Rojsitthisak P
    Pharmazie; 2016 Dec; 71(12):691-700. PubMed ID: 29441997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinted tumor model with extracellular matrix enhanced bioinks for nanoparticle evaluation.
    Chen Y; Xu L; Li W; Chen W; He Q; Zhang X; Tang J; Wang Y; Liu B; Liu J
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34991080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Curcumin-Loaded Solid Lipid Nanoparticles Utilizing Glyceryl Monostearate as Single Lipid Using QbD Approach: Characterization and Evaluation of Anticancer Activity Against Human Breast Cancer Cell Line.
    Bhatt H; Rompicharla SVK; Komanduri N; Aashma S; Paradkar S; Ghosh B; Biswas S
    Curr Drug Deliv; 2018; 15(9):1271-1283. PubMed ID: 29732970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel T7-Modified pH-Responsive Targeted Nanosystem for Co-Delivery of Docetaxel and Curcumin in the Treatment of Esophageal Cancer.
    Deng L; Zhu X; Yu Z; Li Y; Qin L; Liu Z; Feng L; Guo R; Zheng Y
    Int J Nanomedicine; 2020; 15():7745-7762. PubMed ID: 33116498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineer a pre-metastatic niched microenvironment to attract breast cancer cells by utilizing a 3D printed polycaprolactone/nano-hydroxyapatite osteogenic scaffold - An in vitro model system for proof of concept.
    Xiong Q; Zhang N; Zhang M; Wang M; Wang L; Fan Y; Lin CY
    J Biomed Mater Res B Appl Biomater; 2022 Jul; 110(7):1604-1614. PubMed ID: 35112785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis.
    Zhu W; Holmes B; Glazer RI; Zhang LG
    Nanomedicine; 2016 Jan; 12(1):69-79. PubMed ID: 26472048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Metastatic Potential in a 3D Tissue Scaffold toward a Comprehensive in Vitro Model for Breast Cancer Metastasis.
    Balachander GM; Balaji SA; Rangarajan A; Chatterjee K
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27810-22. PubMed ID: 26599258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro evaluation of curcumin effects on breast adenocarcinoma 2D and 3D cell cultures.
    Abuelba H; Cotrutz CE; Stoica BA; Stoica L; Olinici D; Petreuş T
    Rom J Morphol Embryol; 2015; 56(1):71-6. PubMed ID: 25826489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.