These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36541523)

  • 1. Intercalation of argon in honeycomb structures towards promising strategy for rechargeable Li-ion batteries.
    Duden EI; Savacı U; Turan S; Sevik C; Demiroglu I
    J Phys Condens Matter; 2022 Dec; 35(8):. PubMed ID: 36541523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The staging mechanism of AlCl
    Bhauriyal P; Mahata A; Pathak B
    Phys Chem Chem Phys; 2017 Mar; 19(11):7980-7989. PubMed ID: 28263339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries.
    Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y
    J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications.
    Zhou W; Sit PH
    ACS Omega; 2020 Jul; 5(29):18289-18300. PubMed ID: 32743204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
    Wang L; Zhu Y; Guo C; Zhu X; Liang J; Qian Y
    ChemSusChem; 2014 Jan; 7(1):87-91. PubMed ID: 24339264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular engineering on a MoS
    Han X; Yang J; Zhang YW; Yu ZG
    Nanoscale Adv; 2023 May; 5(9):2639-2645. PubMed ID: 37143797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Machine Learning-Enabled Potential Energy Model for Atomistic Simulation of Lithium Intercalation into Graphite from Plating to Overlithiation.
    Yang PY; Chiang YH; Pao CW; Chang CC
    J Chem Theory Comput; 2023 Jul; 19(14):4533-4545. PubMed ID: 37140982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries.
    Wang M; Wang J; Xiao J; Ren N; Pan B; Chen CS; Chen CH
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16279-16288. PubMed ID: 35349272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries.
    Cai W; Yan C; Yao YX; Xu L; Chen XR; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):13007-13012. PubMed ID: 33793052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical study on the intercalation and diffusion of AlF
    Rodríguez SJ; Candia AE; Passeggi MCG; Albanesi EA; Ruano GD
    Phys Chem Chem Phys; 2021 Sep; 23(35):19579-19589. PubMed ID: 34524287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT investigations of KTiOPO
    Huang J; Cai X; Li Y; Fang Z; Li Y; Lin W; Huang S; Zhang Y
    J Chem Phys; 2022 May; 156(20):204702. PubMed ID: 35649874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrode Degradation in Lithium-Ion Batteries.
    Pender JP; Jha G; Youn DH; Ziegler JM; Andoni I; Choi EJ; Heller A; Dunn BS; Weiss PS; Penner RM; Mullins CB
    ACS Nano; 2020 Feb; 14(2):1243-1295. PubMed ID: 31895532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Intercalation of Lithium in Semi-Metallic γ-GeSe Nanosheet: A New Group-IV Monochalcogenide for Lithium-Ion Battery Application.
    Shu Z; Cui X; Wang B; Yan H; Cai Y
    ChemSusChem; 2022 Aug; 15(15):e202200564. PubMed ID: 35680606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.
    Xu J; Dou Y; Wei Z; Ma J; Deng Y; Li Y; Liu H; Dou S
    Adv Sci (Weinh); 2017 Oct; 4(10):1700146. PubMed ID: 29051856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries.
    Weng S; Yang G; Zhang S; Liu X; Zhang X; Liu Z; Cao M; Ateş MN; Li Y; Chen L; Wang Z; Wang X
    Nanomicro Lett; 2023 Sep; 15(1):215. PubMed ID: 37737445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interlayer Design of Pillared Graphite by Na-Halide Cluster Intercalation for Anode Materials of Sodium-Ion Batteries.
    Hwang T; Cho M; Cho K
    ACS Omega; 2021 Apr; 6(14):9492-9499. PubMed ID: 33869929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: density functional theory.
    Benzidi H; Lakhal M; Garara M; Abdellaoui M; Benyoussef A; El Kenz A; Mounkachi O
    Phys Chem Chem Phys; 2019 Sep; 21(36):19951-19962. PubMed ID: 31475997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpenetrating graphene network bct-C
    Yu S; Wang Z; Xiong L; Xiong W; Ouyang C
    Phys Chem Chem Phys; 2019 Nov; 21(42):23485-23491. PubMed ID: 31616886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvated Ion Intercalation in Graphite: Sodium and Beyond.
    Park J; Xu ZL; Kang K
    Front Chem; 2020; 8():432. PubMed ID: 32509735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.