These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36541532)

  • 1. Error-related potential-based shared autonomy via deep recurrent reinforcement learning.
    Wang X; Chen HT; Lin CT
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36541532
    [No Abstract]   [Full Text] [Related]  

  • 2. A new error-monitoring brain-computer interface based on reinforcement learning for people with autism spectrum disorders.
    Pires G; Cruz A; Jesus D; Yasemin M; Nunes UJ; Sousa T; Castelo-Branco M
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36541535
    [No Abstract]   [Full Text] [Related]  

  • 3. Error-related EEG potentials generated during simulated brain-computer interaction.
    Ferrez PW; del R Millan J
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):923-9. PubMed ID: 18334383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a robust asynchronous brain-switch using ErrP-based error correction.
    Yousefi R; Rezazadeh Sereshkeh A; Chau T
    J Neural Eng; 2019 Nov; 16(6):066042. PubMed ID: 31571608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online asynchronous detection of error-related potentials in participants with a spinal cord injury using a generic classifier.
    Lopes-Dias C; Sburlea AI; Breitegger K; Wyss D; Drescher H; Wildburger R; Müller-Putz GR
    J Neural Eng; 2021 Mar; 18(4):046022. PubMed ID: 33779576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards error categorisation in BCI: single-trial EEG classification between different errors.
    Wirth C; Dockree PM; Harty S; Lacey E; Arvaneh M
    J Neural Eng; 2019 Dec; 17(1):016008. PubMed ID: 31683267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining brain-computer interfaces with deep reinforcement learning for robot training: a feasibility study in a simulation environment.
    Vukelić M; Bui M; Vorreuther A; Lingelbach K
    Front Neuroergon; 2023; 4():1274730. PubMed ID: 38234482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multi-Channel Ensemble Method for Error-Related Potential Classification Using 2D EEG Images.
    Tao T; Gao Y; Jia Y; Chen R; Li P; Xu G
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG error potentials detection and classification using time-frequency features for robot reinforcement learning.
    Boubchir L; Touati Y; Daachi B; Chérif AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1761-4. PubMed ID: 26736619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single trial detection of error-related potentials in brain-machine interfaces: a survey and comparison of methods.
    Yasemin M; Cruz A; Nunes UJ; Pires G
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36595316
    [No Abstract]   [Full Text] [Related]  

  • 11. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.
    Kim SK; Kirchner EA; Stefes A; Kirchner F
    Sci Rep; 2017 Dec; 7(1):17562. PubMed ID: 29242555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors that affect error potentials during a grasping task: toward a hybrid natural movement decoding BCI.
    Omedes J; Schwarz A; Müller-Putz GR; Montesano L
    J Neural Eng; 2018 Aug; 15(4):046023. PubMed ID: 29714718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ARX-based EEG data balancing for error potential BCI.
    Farabbi A; Aloia V; Mainardi L
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35523120
    [No Abstract]   [Full Text] [Related]  

  • 14. Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials.
    Batzianoulis I; Iwane F; Wei S; Correia CGPR; Chavarriaga R; Millán JDR; Billard A
    Commun Biol; 2021 Dec; 4(1):1406. PubMed ID: 34916587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain-Specific Processing Stage for Estimating Single-Trail Evoked Potential Improves CNN Performance in Detecting Error Potential.
    Farabbi A; Mainardi L
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of motion state variability on error-related potentials during continuous feedback paradigms and their consequences for classification.
    Luo R; Mai X; Meng J
    J Neurosci Methods; 2024 Jan; 401():109982. PubMed ID: 37839711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 18. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration.
    John AR; Singh AK; Gramann K; Liu D; Lin CT
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415
    [No Abstract]   [Full Text] [Related]  

  • 19. Self-adaptive shared control with brain state evaluation network for human-wheelchair cooperation.
    Deng X; Liang Yu Z; Lin C; Gu Z; Li Y
    J Neural Eng; 2020 Jul; 17(4):045005. PubMed ID: 32413885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-agent co-adaptation using error-related potentials.
    Ehrlich SK; Cheng G
    J Neural Eng; 2018 Dec; 15(6):066014. PubMed ID: 30204127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.