These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36541662)

  • 1. Slow-light effects based on the tunable Fano resonance in a Tamm state coupled graphene surface plasmon system.
    Ruan B; Li M; Liu C; Gao E; Zhang Z; Chang X; Zhang B; Li H
    Phys Chem Chem Phys; 2023 Jan; 25(3):1685-1689. PubMed ID: 36541662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure.
    Hu J; Yao E; Xie W; Liu W; Li D; Lu Y; Zhan Q
    Opt Express; 2019 Jun; 27(13):18642-18652. PubMed ID: 31252804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure.
    Ruan B; Guo J; Wu L; Zhu J; You Q; Dai X; Xiang Y
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28825677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning of the polariton modes induced by longitudinal strong coupling in the graphene hybridized DBR cavity.
    Zhang K; Liu Y; Xia F; Li S; Kong W
    Opt Lett; 2020 Jul; 45(13):3669-3672. PubMed ID: 32630926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial.
    Yan Z; Zhang Z; Du W; Wu W; Hu T; Yu Z; Gu P; Chen J; Tang C
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33276469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable dual-band mid-infrared absorber based on the coupling of a graphene surface plasmon polariton and Tamm phonon-polariton.
    Han J; Shao Y; Chen C; Wang J; Gao Y; Gao Y
    Opt Express; 2021 May; 29(10):15228-15238. PubMed ID: 33985226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linearly Tunable Fano Resonance Modes in a Plasmonic Nanostructure with a Waveguide Loaded with Two Rectangular Cavities Coupled by a Circular Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-TPPs/Fano resonance systems based on an MDM waveguide structure and its sensing application.
    Lu Y; Zhou Y; Cheng D; Li M; Xu Y; Xu J; Wang J
    Appl Opt; 2023 Nov; 62(33):8741-8748. PubMed ID: 38038019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System.
    Wang Q; Ouyang Z; Lin M; Liu Q
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30201870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled Tamm Phonon and Plasmon Polaritons for Designer Planar Multiresonance Absorbers.
    He M; Nolen JR; Nordlander J; Cleri A; Lu G; Arnaud T; McIlwaine NS; Diaz-Granados K; Janzen E; Folland TG; Edgar JH; Maria JP; Caldwell JD
    Adv Mater; 2023 May; 35(20):e2209909. PubMed ID: 36843308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO
    He Z; Xue W; Cui W; Li C; Li Z; Pu L; Feng J; Xiao X; Wang X; Li AG
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32260584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic nanosensor based on multiple independently tunable Fano resonances.
    Cheng L; Wang Z; He X; Cao P
    Beilstein J Nanotechnol; 2019; 10():2527-2537. PubMed ID: 31921531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultranarrow and Tunable Fano Resonance in Ag Nanoshells and a Simple Ag Nanomatryushka.
    Gu P; Cai X; Wu G; Xue C; Chen J; Zhang Z; Yan Z; Liu F; Tang C; Du W; Huang Z; Chen Z
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength.
    Guo J; Jiang L; Dai X; Xiang Y
    Opt Express; 2016 Mar; 24(5):4740-4748. PubMed ID: 29092303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-field manipulation of Tamm plasmon polaritons.
    Li N; Zou Q; Zhao B; Min C; Yuan X; Somekh M; Feng F
    Opt Express; 2023 Feb; 31(5):7321-7335. PubMed ID: 36859866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppressing the radiation loss by hybrid Tamm-surface plasmon BIC modes.
    Qiao T; Hu M; Wang Q; Xiao M; Zhu S; Liu H
    Opt Express; 2024 Jun; 32(12):21497-21505. PubMed ID: 38859502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-referencing refractive index sensor based on graphene-assisted TAMM plasmon cavity resonance.
    Shen S; Hameed AMF; Dai J
    Opt Lett; 2024 Oct; 49(20):5965-5968. PubMed ID: 39404583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons.
    Lu H; Gan X; Jia B; Mao D; Zhao J
    Opt Lett; 2016 Oct; 41(20):4743-4746. PubMed ID: 28005882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically Tunable Fano Resonance from the Coupling between Interband Transition in Monolayer Graphene and Magnetic Dipole in Metamaterials.
    Liu B; Tang C; Chen J; Zhu M; Pei M; Zhu X
    Sci Rep; 2017 Dec; 7(1):17117. PubMed ID: 29215032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable plasmon-induced transparency with a dielectric grating-coupled graphene structure for slowing terahertz waves.
    Wang T; Yan F; Wang R; Tian F; Li L
    Appl Opt; 2020 Aug; 59(24):7179-7185. PubMed ID: 32902480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.