These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36541725)

  • 1. Automated handling of complex chemical structures in Z-matrix coordinates-The chemcoord library.
    Weser O; Hein-Janke B; Mata RA
    J Comput Chem; 2023 Feb; 44(5):710-726. PubMed ID: 36541725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometry optimization of periodic systems using internal coordinates.
    Bucko T; Hafner J; Angyán JG
    J Chem Phys; 2005 Mar; 122(12):124508. PubMed ID: 15836398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient procedure for the numerical calculation of harmonic vibrational frequencies based on internal coordinates.
    Miliordos E; Xantheas SS
    J Phys Chem A; 2013 Aug; 117(32):7019-29. PubMed ID: 23406376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spur to molecular geometry optimization: Gradient-enhanced universal kriging with on-the-fly adaptive ab initio prior mean functions in curvilinear coordinates.
    Teng C; Huang D; Bao JL
    J Chem Phys; 2023 Jan; 158(2):024112. PubMed ID: 36641392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Definition of Systematic, Approximately Separable, and Modular Internal Coordinates (SASMIC) for macromolecular simulation.
    Echenique P; Alonso JL
    J Comput Chem; 2006 Jul; 27(10):1076-87. PubMed ID: 16685717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growing string method with interpolation and optimization in internal coordinates: method and examples.
    Zimmerman PM
    J Chem Phys; 2013 May; 138(18):184102. PubMed ID: 23676024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal-to-Cartesian back transformation of molecular geometry steps using high-order geometric derivatives.
    Rybkin VV; Ekström U; Helgaker T
    J Comput Chem; 2013 Aug; 34(21):1842-9. PubMed ID: 23703109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New General Tools for Constrained Geometry Optimizations.
    De Vico L; Olivucci M; Lindh R
    J Chem Theory Comput; 2005 Sep; 1(5):1029-37. PubMed ID: 26641918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The choice of internal coordinates in complex chemical systems.
    Németh K; Challacombe M; Van Veenendaal M
    J Comput Chem; 2010 Jul; 31(10):2078-86. PubMed ID: 20087903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans.
    Plessow PN
    J Chem Theory Comput; 2018 Feb; 14(2):981-990. PubMed ID: 29373789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On updating torsion angles of molecular conformations.
    Choi V
    J Chem Inf Model; 2006; 46(1):438-44. PubMed ID: 16426078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General internal coordinate gradient vectors and the vibrational kinetic energy operator of centrally-connected penta-atomic systems. Part I.
    Manson SA; Law MM
    Phys Chem Chem Phys; 2006 Jun; 8(24):2848-54. PubMed ID: 16775640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometry optimization in density functional methods.
    Reveles JU; Köster AM
    J Comput Chem; 2004 Jul; 25(9):1109-16. PubMed ID: 15116354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instanton rate constant calculations using interpolated potential energy surfaces in nonredundant, rotationally and translationally invariant coordinates.
    McConnell SR; Kästner J
    J Comput Chem; 2019 Mar; 40(7):866-874. PubMed ID: 30677168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DL-FIND: an open-source geometry optimizer for atomistic simulations.
    Kästner J; Carr JM; Keal TW; Thiel W; Wander A; Sherwood P
    J Phys Chem A; 2009 Oct; 113(43):11856-65. PubMed ID: 19639948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isomerization Reactions of the Cu
    López-Sosa L; Sanchez-Álvarez JA; Calaminici P
    J Phys Chem A; 2022 Apr; 126(16):2463-2470. PubMed ID: 35417171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints.
    Vreven T; Morokuma K; Farkas O; Schlegel HB; Frisch MJ
    J Comput Chem; 2003 Apr; 24(6):760-9. PubMed ID: 12666168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometry optimization for peptides and proteins: comparison of Cartesian and internal coordinates.
    Koslover EF; Wales DJ
    J Chem Phys; 2007 Dec; 127(23):234105. PubMed ID: 18154373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning Correlations between Internal Coordinates to Improve 3D Cartesian Coordinates for Proteins.
    Li J; Zhang O; Lee S; Namini A; Liu ZH; Teixeira JMC; Forman-Kay JD; Head-Gordon T
    J Chem Theory Comput; 2023 Jul; 19(14):4689-4700. PubMed ID: 36749957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new module for constrained multi-fragment geometry optimization in internal coordinates implemented in the MOLCAS package.
    Vysotskiy VP; Boström J; Veryazov V
    J Comput Chem; 2013 Nov; 34(30):2657-65. PubMed ID: 24006272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.