These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 36541797)

  • 1. Medium-Chain-Length Fatty Acid Catabolism in Cupriavidus necator H16: Transcriptome Sequencing Reveals Differences from Long-Chain-Length Fatty Acid β-Oxidation and Involvement of Several Homologous Genes.
    Strittmatter CS; Poehlein A; Himmelbach A; Daniel R; Steinbüchel A
    Appl Environ Microbiol; 2023 Jan; 89(1):e0142822. PubMed ID: 36541797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the Degradation of Medium-Chain-Length Dicarboxylic Acids in Cupriavidus necator H16 Reveal β-Oxidation Differences between Dicarboxylic Acids and Fatty Acids.
    Strittmatter CS; Eggers J; Biesgen V; Hengsbach JN; Sakatoku A; Albrecht D; Riedel K; Steinbüchel A
    Appl Environ Microbiol; 2022 Jan; 88(2):e0187321. PubMed ID: 34731045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of various β-ketothiolase genes on PHBHHx production in Cupriavidus necator H16 derivatives.
    Arikawa H; Sato S
    Appl Microbiol Biotechnol; 2022 Apr; 106(8):3021-3032. PubMed ID: 35451630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetically modified strains of Ralstonia eutropha H16 with β-ketothiolase gene deletions for production of copolyesters with defined 3-hydroxyvaleric acid contents.
    Lindenkamp N; Volodina E; Steinbüchel A
    Appl Environ Microbiol; 2012 Aug; 78(15):5375-83. PubMed ID: 22636005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide transcriptome analyses of the 'Knallgas' bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism.
    Peplinski K; Ehrenreich A; Döring C; Bömeke M; Reinecke F; Hutmacher C; Steinbüchel A
    Microbiology (Reading); 2010 Jul; 156(Pt 7):2136-2152. PubMed ID: 20395272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of polyhydroxyalkanoates from vegetable oil under the co-expression of fadE and phaJ genes in Cupriavidus necator.
    Flores-Sánchez A; Rathinasabapathy A; López-Cuellar MDR; Vergara-Porras B; Pérez-Guevara F
    Int J Biol Macromol; 2020 Dec; 164():1600-1607. PubMed ID: 32768477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations on the microbial catabolism of the organic sulfur compounds TDP and DTDP in Ralstonia eutropha H16 employing DNA microarrays.
    Peplinski K; Ehrenreich A; Döring C; Bömeke M; Steinbüchel A
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1145-59. PubMed ID: 20924576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions.
    Tang R; Weng C; Peng X; Han Y
    Metab Eng; 2020 Sep; 61():11-23. PubMed ID: 32348842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression.
    Brigham CJ; Budde CF; Holder JW; Zeng Q; Mahan AE; Rha C; Sinskey AJ
    J Bacteriol; 2010 Oct; 192(20):5454-64. PubMed ID: 20709892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of multi-functional enzyme FadB from Cupriavidus necator: Non-formation of FadAB complex.
    Son HF; Ahn JW; Hong J; Seok J; Jin KS; Kim KJ
    Arch Biochem Biophys; 2022 Nov; 730():109391. PubMed ID: 36087768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailored polyhydroxyalkanoate production from renewable non-fatty acid carbon sources using engineered Cupriavidus necator H16.
    Park S; Roh S; Yoo J; Ahn JH; Gong G; Lee SM; Um Y; Han SO; Ko JK
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130360. PubMed ID: 38387639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production.
    Orita I; Iwazawa R; Nakamura S; Fukui T
    J Biosci Bioeng; 2012 Jan; 113(1):63-9. PubMed ID: 22014784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage.
    Chen JS; Colón B; Dusel B; Ziesack M; Way JC; Torella JP
    PeerJ; 2015; 3():e1468. PubMed ID: 26664804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Laboratory Evolution of
    González-Villanueva M; Galaiya H; Staniland P; Staniland J; Savill I; Wong TS; Tee KL
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31731699
    [No Abstract]   [Full Text] [Related]  

  • 15. Microaerobic insights into production of polyhydroxyalkanoates containing 3-hydroxyhexanoate via native reverse β-oxidation from glucose in Ralstonia eutropha H16.
    Huong KH; Orita I; Fukui T
    Microb Cell Fact; 2024 Jan; 23(1):21. PubMed ID: 38221622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and functional analyses of R-specific enoyl coenzyme A hydratases in polyhydroxyalkanoate-producing Ralstonia eutropha.
    Kawashima Y; Cheng W; Mifune J; Orita I; Nakamura S; Fukui T
    Appl Environ Microbiol; 2012 Jan; 78(2):493-502. PubMed ID: 22081565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.
    Riedel SL; Lu J; Stahl U; Brigham CJ
    Appl Microbiol Biotechnol; 2014 Feb; 98(4):1469-83. PubMed ID: 24343766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of multiple beta-ketothiolase deletion mutations in Ralstonia eutropha H16 on the composition of 3-mercaptopropionic acid-containing copolymers.
    Lindenkamp N; Peplinski K; Volodina E; Ehrenreich A; Steinbüchel A
    Appl Environ Microbiol; 2010 Aug; 76(16):5373-82. PubMed ID: 20601511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of phase-dependent transcriptomic changes and Rubisco-mediated CO2 fixation into poly (3-hydroxybutyrate) under heterotrophic condition in Ralstonia eutropha H16 based on RNA-seq and gene deletion analyses.
    Shimizu R; Chou K; Orita I; Suzuki Y; Nakamura S; Fukui T
    BMC Microbiol; 2013 Jul; 13():169. PubMed ID: 23879744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global changes in the proteome of Cupriavidus necator H16 during poly-(3-hydroxybutyrate) synthesis from various biodiesel by-product substrates.
    Sharma PK; Fu J; Spicer V; Krokhin OV; Cicek N; Sparling R; Levin DB
    AMB Express; 2016 Dec; 6(1):36. PubMed ID: 27184362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.