These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36542066)

  • 1. Ranking Peptide Binders by Affinity with AlphaFold.
    Chang L; Perez A
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202213362. PubMed ID: 36542066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure Determination of Challenging Protein-Peptide Complexes Combining NMR Chemical Shift Data and Molecular Dynamics Simulations.
    Mondal A; Swapna GVT; Lopez MM; Klang L; Hao J; Ma L; Roth MJ; Montelione GT; Perez A
    J Chem Inf Model; 2023 Apr; 63(7):2058-2072. PubMed ID: 36988562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP.
    Schneider M; Rosam M; Glaser M; Patronov A; Shah H; Back KC; Daake MA; Buchner J; Antes I
    Proteins; 2016 Oct; 84(10):1390-407. PubMed ID: 27287023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the effects of amino acid replacements in peptide hormones on their binding affinities for class B GPCRs and application to the design of secretin receptor antagonists.
    Te JA; Dong M; Miller LJ; Bordner AJ
    J Comput Aided Mol Des; 2012 Jul; 26(7):835-45. PubMed ID: 22576240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain.
    Hou T; Zhang W; Case DA; Wang W
    J Mol Biol; 2008 Feb; 376(4):1201-14. PubMed ID: 18206907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01.
    Pedersen LE; Rasmussen M; Harndahl M; Nielsen M; Buus S; Jungersen G
    Immunogenetics; 2016 Feb; 68(2):157-65. PubMed ID: 26572135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein-peptide complexes.
    Weng G; Wang E; Chen F; Sun H; Wang Z; Hou T
    Phys Chem Chem Phys; 2019 May; 21(19):10135-10145. PubMed ID: 31062799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
    Hertz T; Yanover C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S3. PubMed ID: 16723006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants.
    Yin R; Feng BY; Varshney A; Pierce BG
    Protein Sci; 2022 Aug; 31(8):e4379. PubMed ID: 35900023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tertiary motifs as building blocks for the design of protein-binding peptides.
    Swanson S; Sivaraman V; Grigoryan G; Keating AE
    Protein Sci; 2022 Jun; 31(6):e4322. PubMed ID: 35634780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving peptide-protein docking with AlphaFold-Multimer using forced sampling.
    Johansson-Åkhe I; Wallner B
    Front Bioinform; 2022; 2():959160. PubMed ID: 36304330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes.
    Bordner AJ; Abagyan R
    Proteins; 2006 May; 63(3):512-26. PubMed ID: 16470819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based prediction of domain-peptide binding affinity by dissecting residue interaction profile at complex interface: a case study on CAL PDZ domain.
    Jin R; Ma Y; Qin L; Ni Z
    Protein Pept Lett; 2013 Sep; 20(9):1018-28. PubMed ID: 23305467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based identification of CaMKIIα-interacting MUPP1 PDZ domains and rational design of peptide ligands to target such interaction in human fertilization.
    Zhang YL; Han ZF; Sun YP
    Amino Acids; 2016 Jun; 48(6):1509-21. PubMed ID: 26984442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubility-Aware Protein Binding Peptide Design Using AlphaFold.
    Kosugi T; Ohue M
    Biomedicines; 2022 Jul; 10(7):. PubMed ID: 35884931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Protein-Peptide Complex Structures by Accounting for Peptide Flexibility and the Physicochemical Environment.
    Xu X; Zou X
    J Chem Inf Model; 2022 Jan; 62(1):27-39. PubMed ID: 34931833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors.
    Raveh B; London N; Zimmerman L; Schueler-Furman O
    PLoS One; 2011 Apr; 6(4):e18934. PubMed ID: 21572516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated unsupervised-supervised modeling and prediction of protein-peptide affinities at structural level.
    Zhou P; Wen L; Lin J; Mei L; Liu Q; Shang S; Li J; Shu J
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.