These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36542216)

  • 21. Cardiac Magnetic Resonance Imaging Findings in 2954 COVID-19 Adult Survivors: A Comprehensive Systematic Review.
    Shafiabadi Hassani N; Talakoob H; Karim H; MozafariBazargany M; Rastad H
    J Magn Reson Imaging; 2022 Mar; 55(3):866-880. PubMed ID: 34309139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents.
    Ferreira VM; Piechnik SK; Dall'Armellina E; Karamitsos TD; Francis JM; Ntusi N; Holloway C; Choudhury RP; Kardos A; Robson MD; Friedrich MG; Neubauer S
    J Cardiovasc Magn Reson; 2014 May; 16(1):36. PubMed ID: 24886708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tissue Characterization by Mapping and Strain Cardiac MRI to Evaluate Myocardial Inflammation in Fulminant Myocarditis.
    Li H; Zhu H; Yang Z; Tang D; Huang L; Xia L
    J Magn Reson Imaging; 2020 Sep; 52(3):930-938. PubMed ID: 32080960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiac involvement in patients recovering from Delta Variant of COVID-19: a prospective multi-parametric MRI study.
    Zhang L; Wei X; Wang H; Jiang R; Tan Z; Ouyang J; Li X; Lei C; Liu H; Liu J
    ESC Heart Fail; 2022 Aug; 9(4):2576-2584. PubMed ID: 35560820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiac involvement in consecutive elite athletes recovered from Covid-19: A magnetic resonance study.
    Małek ŁA; Marczak M; Miłosz-Wieczorek B; Konopka M; Braksator W; Drygas W; Krzywański J
    J Magn Reson Imaging; 2021 Jun; 53(6):1723-1729. PubMed ID: 33474768
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrahigh-field cardiovascular magnetic resonance T1 and T2 mapping for the assessment of anthracycline-induced cardiotoxicity in rat models: validation against histopathologic changes.
    Park HS; Hong YJ; Han K; Kim PK; An E; Lee JY; Park CH; Lee HJ; Hur J; Kim YJ; Choi BW
    J Cardiovasc Magn Reson; 2021 Jun; 23(1):76. PubMed ID: 34134713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiparametric cardiovascular magnetic resonance imaging in acute myocarditis: a comparison of different measurement approaches.
    Dabir D; Vollbrecht TM; Luetkens JA; Kuetting DLR; Isaak A; Feisst A; Fimmers R; Sprinkart AM; Schild HH; Thomas D
    J Cardiovasc Magn Reson; 2019 Aug; 21(1):54. PubMed ID: 31462282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiac Magnetic Resonance Imaging T1 and T2 Mapping in Systemic Lupus Erythematosus in Relation to Antimalarial Treatment.
    Shalmon T; Thavendiranathan P; Seidman MA; Wald RM; Karur GR; Harvey PJ; Akhtari S; Osuntokun T; Tselios K; Gladman DD; Hanneman K
    J Thorac Imaging; 2023 May; 38(3):W33-W42. PubMed ID: 36917505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. T1 and T2 mapping to detect chronic inflammation in cardiac magnetic resonance imaging in heart failure with reduced ejection fraction.
    Emrich T; Hahn F; Fleischmann D; Halfmann MC; Düber C; Varga-Szemes A; Escher F; Pefani E; Münzel T; Schultheiss HP; Kreitner KF; Wenzel P
    ESC Heart Fail; 2020 Oct; 7(5):2544-2552. PubMed ID: 32790159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks.
    Farrag NA; Lochbihler A; White JA; Ukwatta E
    Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. T
    Maforo NG; Magrath P; Moulin K; Shao J; Kim GH; Prosper A; Renella P; Wu HH; Halnon N; Ennis DB
    J Cardiovasc Magn Reson; 2020 Dec; 22(1):85. PubMed ID: 33302967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection and Monitoring of Acute Myocarditis Applying Quantitative Cardiovascular Magnetic Resonance.
    von Knobelsdorff-Brenkenhoff F; Schüler J; Dogangüzel S; Dieringer MA; Rudolph A; Greiser A; Kellman P; Schulz-Menger J
    Circ Cardiovasc Imaging; 2017 Feb; 10(2):. PubMed ID: 28213448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is cardiac involvement prevalent in highly trained athletes after SARS-CoV-2 infection? A cardiac magnetic resonance study using sex-matched and age-matched controls.
    Szabó L; Juhász V; Dohy Z; Fogarasi C; Kovács A; Lakatos BK; Kiss O; Sydó N; Csulak E; Suhai FI; Hirschberg K; Becker D; Merkely B; Vágó H
    Br J Sports Med; 2022 May; 56(10):553-560. PubMed ID: 34848398
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances in T1 and T2 Mapping in the Assessment of Fulminant Myocarditis by Cardiac Magnetic Resonance.
    Wheen P; Armstrong R; Daly CA
    Curr Cardiol Rep; 2020 May; 22(7):47. PubMed ID: 32472218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance.
    Ferreira VM; Piechnik SK; Dall'Armellina E; Karamitsos TD; Francis JM; Choudhury RP; Friedrich MG; Robson MD; Neubauer S
    J Cardiovasc Magn Reson; 2012 Jun; 14(1):42. PubMed ID: 22720998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in Cardiac Magnetic Resonance Imaging Markers Between Patients With COVID-19-associated Myocardial Injury and Patients With Clinically Suspected Myocarditis.
    Maurus S; Weckbach LT; Marschner C; Kunz WG; Ricke J; Kazmierczak PM; Bieber S; Brado J; Kraechan A; Hellmuth JC; Hausleiter J; Massberg S; Grabmaier U; Curta A
    J Thorac Imaging; 2021 Sep; 36(5):279-285. PubMed ID: 34108409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-invasive differentiation of idiopathic inflammatory myopathy with cardiac involvement from acute viral myocarditis using cardiovascular magnetic resonance imaging T1 and T2 mapping.
    Huber AT; Bravetti M; Lamy J; Bacoyannis T; Roux C; de Cesare A; Rigolet A; Benveniste O; Allenbach Y; Kerneis M; Cluzel P; Kachenoura N; Redheuil A
    J Cardiovasc Magn Reson; 2018 Feb; 20(1):11. PubMed ID: 29429407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myocardial iron overload by cardiovascular magnetic resonance native segmental T1 mapping: a sensitive approach that correlates with cardiac complications.
    Meloni A; Martini N; Positano V; De Luca A; Pistoia L; Sbragi S; Spasiano A; Casini T; Bitti PP; Allò M; Sanna PMG; De Caterina R; Sinagra G; Pepe A
    J Cardiovasc Magn Reson; 2021 Jun; 23(1):70. PubMed ID: 34120634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of cardiac amyloidosis using cardiac magnetic resonance fingerprinting.
    Eck BL; Seiberlich N; Flamm SD; Hamilton JI; Suresh A; Kumar Y; Hanna M; Houston A; Tew D; Tang WHW; Kwon DH
    Int J Cardiol; 2022 Mar; 351():107-110. PubMed ID: 34963645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Additional value of T1 and T2 mapping techniques for early detection of myocardial involvement in scleroderma.
    Meloni A; Gargani L; Bruni C; Cavallaro C; Gobbo M; D'Agostino A; D'Angelo G; Martini N; Grigioni F; Sinagra G; De Caterina R; Quaia E; Mavrogeni S; Cademartiri F; Matucci-Cerinic M; Pepe A
    Int J Cardiol; 2023 Apr; 376():139-146. PubMed ID: 36731634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.