These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36542286)

  • 1. Experimental study on the effect of cold soaking with liquid nitrogen on the coal chemical and microstructural characteristics.
    Liu S; Li X
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):36080-36097. PubMed ID: 36542286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine Characterization of the Macromolecular Structure of Huainan Coal Using XRD, FTIR, 13C-CP/MAS NMR, SEM, and AFM Techniques.
    Wu D; Zhang H; Hu G; Zhang W
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32521705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the Occurrence Difference of Functional Groups in Coals with Different Metamorphic Degrees.
    Jia J; Xing Y; Li B; Zhao D; Wu Y; Chen Y; Wang D
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy.
    Jiang J; Zhang S; Longhurst P; Yang W; Zheng S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 255():119724. PubMed ID: 33784595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopore Structure of Different Rank Coals and Its Quantitative Characterization.
    Li X; Li Z; Zhang F; Zhang Q; Nie B; Meng Y
    J Nanosci Nanotechnol; 2021 Jan; 21(1):22-42. PubMed ID: 33213611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental research on the influence of acid on the chemical and pore structure evolution characteristics of Wenjiaba tectonic coal.
    Li X; Li X; Xu E; Xie H; Sui H; Cai J; He Y
    PLoS One; 2024; 19(4):e0301923. PubMed ID: 38652724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Functional Groups in Coal with Different Vitrinite/Inertinite Ratios on Pyrolysis Products.
    Wang A; Huang J; Zhao M; Liu Y; Cao D; Wei Y; Wei L
    ACS Omega; 2023 May; 8(20):18202-18211. PubMed ID: 37251182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation and Generation Mechanism of Macromolecular Representation for Dongsheng Coal Vitrinite.
    Wang X; Dong Z; Yu R
    ACS Omega; 2022 Apr; 7(13):11033-11043. PubMed ID: 35415363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Tetrahydrofuran Extraction on Surface Functional Groups of Coking Coal and Its Wettability.
    Yao J; Ji H; Lu H; Gao T
    J Anal Methods Chem; 2019; 2019():1285462. PubMed ID: 31346488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Nanostructure Evolution in Coal Molecules of Different Ranks.
    Meng J; Zhong R; Niu J; Li S; Nie B
    J Nanosci Nanotechnol; 2021 Jan; 21(1):405-421. PubMed ID: 33213640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure Study of High-Rank Coal in an Alkaline Solution at the Chengzhuang Mine.
    Sun X; Liang W; Li M; Yue G; Lin H
    Langmuir; 2023 May; 39(17):5945-5955. PubMed ID: 37079620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the chemistry of resinite, funginite and associated vitrinite in coal with micro-FTIR.
    Chen Y; Caro LD; Mastalerz M; Schimmelmann A; Blandón A
    J Microsc; 2013 Jan; 249(1):69-81. PubMed ID: 23170999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of coupling mechanism between hydrocarbon generation and structure evolution in low rank coal].
    Li W; Zhu YM; Chen SB; Si QH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Apr; 33(4):1052-6. PubMed ID: 23841427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Coal Combustion Reactivity of Different Metamorphic Degree and Structure Changes of FTIR Analysis in Pyrolysis Process].
    Li N; Liu QS; Zhen M; Zhao B; Feng W; Song YM; Zhi KD; He RX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Sep; 36(9):2760-5. PubMed ID: 30084591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Organic Sulfur on Low-Temperature Oxidation of Coal and its Transition Characteristics.
    Gao F; Jia Z; Shan YF; Teng Y; Li YD; Pu XG
    ACS Omega; 2022 Nov; 7(44):39830-39839. PubMed ID: 36385873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular model construction of Danhou lignite and study on adsorption of CH
    Zhu H; Huo Y; He X; Wang W; Fang S; Zhang Y
    Environ Sci Pollut Res Int; 2021 May; 28(20):25368-25381. PubMed ID: 33454865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on the Interaction Mechanisms between ScCO
    Dong K; Kong S; Niu Z; Jia B
    Molecules; 2024 Jun; 29(13):. PubMed ID: 38998966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of carbon residues structures on burnout characteristic by FTIR and Raman spectroscopy.
    Liu Y; Sun B; Tajcmanova L; Liu C; Wu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120947. PubMed ID: 35144080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characterization of organic nitrogen and sulfur functional groups in coals after biomethane production.
    Liu X; Zhao F; Guo H; Xia D; Dong Z; Li Z
    Environ Sci Pollut Res Int; 2022 May; 29(22):33495-33505. PubMed ID: 35028845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Mechanism of Ozone Oxidation of Coal and the Revelation of Coal Macromolecular Structure by Oxidation Products.
    Luo Q; Liu W; Zhuo Q
    ACS Omega; 2024 Jan; 9(1):753-770. PubMed ID: 38222567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.