These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36542430)

  • 21. Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery.
    Le TA; Zhang X; Hoshiar AK; Yoon J
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28880220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.
    Sarwar A; Nemirovski A; Shapiro B
    J Magn Magn Mater; 2012 Mar; 324(5):742-754. PubMed ID: 23335834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional magnetic nanoparticles for targeted delivery.
    Kumar A; Jena PK; Behera S; Lockey RF; Mohapatra S; Mohapatra S
    Nanomedicine; 2010 Feb; 6(1):64-9. PubMed ID: 19446653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the magnetic aggregation of Fe
    Karvelas EG; Lampropoulos NK; Benos LT; Karakasidis T; Sarris IE
    Comput Methods Programs Biomed; 2021 Jan; 198():105778. PubMed ID: 33039920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of buoyant and Saffman lift force on magnetic drug targeting in microvessel in the presence of inertia.
    Sutradhar A
    Microvasc Res; 2021 Jan; 133():104099. PubMed ID: 33144121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational simulation of electromagnetic fields on human targets for magnetic targeting applications.
    Fiocchi S; Chiaramello E; Bonato M; Tognola G; Catalucci D; Parazzini M; Ravazzani P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5674-5677. PubMed ID: 31947140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aggregation process of paramagnetic particles in fluid in the magnetic field.
    Pei N; Cheng X; Huang Z; Wang X; Yang K; Wang Y; Gong Y
    Bioelectromagnetics; 2016 Jul; 37(5):323-30. PubMed ID: 27126920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic drug targeting simulations in blood flows with fluid-structure interaction.
    Calandrini S; Capodaglio G; Aulisa E
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2954. PubMed ID: 29274303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical Study of Nanoparticle Deposition in a Gaseous Microchannel under the Influence of Various Forces.
    Bao F; Hao H; Yin Z; Tu C
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Silico Magnetic Nanocontainers Navigation in Blood Vessels: A Feedback Control Approach.
    Do TD; Noh Y; Kim MO; Yoon J
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6368-73. PubMed ID: 27427720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet.
    Manshadi MKD; Saadat M; Mohammadi M; Kamali R; Shamsi M; Naseh M; Sanati-Nezhad A
    Drug Deliv; 2019 Dec; 26(1):120-128. PubMed ID: 30798633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetic Nanotweezers for Interrogating Biological Processes in Space and Time.
    Kim JW; Jeong HK; Southard KM; Jun YW; Cheon J
    Acc Chem Res; 2018 Apr; 51(4):839-849. PubMed ID: 29589897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays.
    Barnsley LC; Carugo D; Aron M; Stride E
    Phys Med Biol; 2017 Mar; 62(6):2333-2360. PubMed ID: 28141578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetorelaxometric quantification of magnetic nanoparticles in an artery model after ex vivo magnetic drug targeting.
    Richter H; Wiekhorst F; Schwarz K; Lyer S; Tietze R; Alexiou Ch; Trahms L
    Phys Med Biol; 2009 Sep; 54(18):N417-24. PubMed ID: 19700820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An in vitro study of magnetic particle targeting in small blood vessels.
    Udrea LE; Strachan NJ; Bădescu V; Rotariu O
    Phys Med Biol; 2006 Oct; 51(19):4869-81. PubMed ID: 16985276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Approach to Accumulate Superparamagnetic Particles in Aqueous Environment Using Time-Varying Magnetic Field.
    Liu YL; Chen JJ; Ahmad F; Zhang TD; Guo WH; Ye YJ; Shang P; Yin DC
    IEEE Trans Biomed Eng; 2020 Jun; 67(6):1558-1564. PubMed ID: 31502959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Improved Electromagnetic Field Optimization for the Global Optimization Problems.
    Yurtkuran A
    Comput Intell Neurosci; 2019; 2019():6759106. PubMed ID: 31263494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling and simulation of smart magnetic self-assembled nanomicelle trajectories in an internal thoracic artery flow for breast cancer therapy.
    Sulttan S; Rohani S
    Drug Deliv Transl Res; 2023 Feb; 13(2):675-688. PubMed ID: 36056290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the influence of particle shape and air velocity on the flowability in the respiratory tract: a computational fluid dynamics approach.
    Ali AM; Abo Dena AS; Yacoub MH; El-Sherbiny IM
    Drug Dev Ind Pharm; 2019 Jul; 45(7):1149-1156. PubMed ID: 31007093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.