BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 36542665)

  • 1. Exploring a diverse world of effector domains and amyloid signaling motifs in fungal NLR proteins.
    Wojciechowski JW; Tekoglu E; Gąsior-Głogowska M; Coustou V; Szulc N; Szefczyk M; Kopaczyńska M; Saupe SJ; Dyrka W
    PLoS Comput Biol; 2022 Dec; 18(12):e1010787. PubMed ID: 36542665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of NLR-associated Amyloid Signaling Motifs in Bacterial Genomes.
    Dyrka W; Coustou V; Daskalov A; Lends A; Bardin T; Berbon M; Kauffmann B; Blancard C; Salin B; Loquet A; Saupe SJ
    J Mol Biol; 2020 Nov; 432(23):6005-6027. PubMed ID: 33058872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of Amyloid Motifs in NLR Signaling in Fungi.
    Loquet A; Saupe SJ
    Biomolecules; 2017 Apr; 7(2):. PubMed ID: 28406433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity and variability of NOD-like receptors in fungi.
    Dyrka W; Lamacchia M; Durrens P; Kobe B; Daskalov A; Paoletti M; Sherman DJ; Saupe SJ
    Genome Biol Evol; 2014 Nov; 6(12):3137-58. PubMed ID: 25398782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amyloid Signaling in Filamentous Fungi and Bacteria.
    Saupe SJ
    Annu Rev Microbiol; 2020 Sep; 74():673-691. PubMed ID: 32689912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theme and variations: evolutionary diversification of the HET-s functional amyloid motif.
    Daskalov A; Dyrka W; Saupe SJ
    Sci Rep; 2015 Jul; 5():12494. PubMed ID: 26219477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial Prion Cross-Seeding between Fungal and Mammalian Amyloid Signaling Motifs.
    Bardin T; Daskalov A; Barrouilhet S; Granger-Farbos A; Salin B; Blancard C; Kauffmann B; Saupe SJ; Coustou V
    mBio; 2021 Feb; 12(1):. PubMed ID: 33563842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis.
    Daskalov A; Habenstein B; Sabaté R; Berbon M; Martinez D; Chaignepain S; Coulary-Salin B; Hofmann K; Loquet A; Saupe SJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2720-5. PubMed ID: 26903619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold.
    Daskalov A; Habenstein B; Martinez D; Debets AJ; Sabaté R; Loquet A; Saupe SJ
    PLoS Biol; 2015 Feb; 13(2):e1002059. PubMed ID: 25671553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Animal NLRs provide structural insights into plant NLR function.
    Bentham A; Burdett H; Anderson PA; Williams SJ; Kobe B
    Ann Bot; 2017 Mar; 119(5):827-702. PubMed ID: 27562749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of specificity-defining amino acids of the wheat immune receptor Pm2 and powdery mildew effector AvrPm2.
    Manser B; Koller T; Praz CR; Roulin AC; Zbinden H; Arora S; Steuernagel B; Wulff BBH; Keller B; Sánchez-Martín J
    Plant J; 2021 May; 106(4):993-1007. PubMed ID: 33629439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NLR surveillance of essential SEC-9 SNARE proteins induces programmed cell death upon allorecognition in filamentous fungi.
    Heller J; Clavé C; Gladieux P; Saupe SJ; Glass NL
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2292-E2301. PubMed ID: 29463729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors.
    Liu Y; Zhang X; Yuan G; Wang D; Zheng Y; Ma M; Guo L; Bhadauria V; Peng YL; Liu J
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34702740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-informed insights for NLR functioning in plant immunity.
    Sukarta OCA; Slootweg EJ; Goverse A
    Semin Cell Dev Biol; 2016 Aug; 56():134-149. PubMed ID: 27208725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces.
    Guo L; Cesari S; de Guillen K; Chalvon V; Mammri L; Ma M; Meusnier I; Bonnot F; Padilla A; Peng YL; Liu J; Kroj T
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11637-11642. PubMed ID: 30355769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pattern recognition receptors in grass carp Ctenopharyngodon idella: II. Organization and expression analysis of NOD-like receptors.
    Xu T; Liao Z; Su J
    Dev Comp Immunol; 2020 Sep; 110():103734. PubMed ID: 32418892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the evolutionary trajectories of signal-transducing amyloids in fungi and beyond.
    Daskalov A
    Prion; 2016 Sep; 10(5):362-368. PubMed ID: 27648755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation and Regulation of NLR Immune Receptor Networks.
    Kourelis J; Adachi H
    Plant Cell Physiol; 2022 Oct; 63(10):1366-1377. PubMed ID: 35941738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution.
    Shimizu M; Hirabuchi A; Sugihara Y; Abe A; Takeda T; Kobayashi M; Hiraka Y; Kanzaki E; Oikawa K; Saitoh H; Langner T; Banfield MJ; Kamoun S; Terauchi R
    Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2116896119. PubMed ID: 35771942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity, structure and function of the coiled-coil domains of plant NLR immune receptors.
    Wang J; Han M; Liu Y
    J Integr Plant Biol; 2021 Feb; 63(2):283-296. PubMed ID: 33205883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.