These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36542816)
1. Detailed Study of the Formation of Soot Precursors and Soot in Highly Controlled Ethylene(/Toluene) Counterflow Diffusion Flames. Gleason K; Gomez A J Phys Chem A; 2023 Jan; 127(1):276-285. PubMed ID: 36542816 [TBL] [Abstract][Full Text] [Related]
2. Effects of diluent gases on sooting transition process in ethylene counterflow diffusion flames. Su Z; Ying Y; Chen C; Zhao R; Zhao X; Liu D RSC Adv; 2022 Jun; 12(28):18181-18196. PubMed ID: 35800317 [TBL] [Abstract][Full Text] [Related]
3. Reduction of PAH and soot precursors in benzene flames by addition of ethanol. Golea D; Rezgui Y; Guemini M; Hamdane S J Phys Chem A; 2012 Apr; 116(14):3625-42. PubMed ID: 22429107 [TBL] [Abstract][Full Text] [Related]
4. On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl-indenyl addition. Sinha S; Rahman RK; Raj A Phys Chem Chem Phys; 2017 Jul; 19(29):19262-19278. PubMed ID: 28702614 [TBL] [Abstract][Full Text] [Related]
5. Nanostructure Transition of Young Soot Aggregates to Mature Soot Aggregates in Diluted Diffusion Flames. Davis J; Molnar E; Novosselov I Carbon N Y; 2020 Apr; 159():255-265. PubMed ID: 32863394 [TBL] [Abstract][Full Text] [Related]
6. Effects of Acetylene Addition to the Fuel Stream on Soot Formation and Flame Properties in an Axisymmetric Laminar Coflow Ethylene/Air Diffusion Flame. Xie X; Zheng S; Sui R; Luo Z; Liu S; Consalvi JL ACS Omega; 2021 Apr; 6(15):10371-10382. PubMed ID: 34056190 [TBL] [Abstract][Full Text] [Related]
7. Online determination of polycyclic aromatic hydrocarbon formation from a flame soot generator. Mueller L; Jakobi G; Orasche J; Karg E; Sklorz M; Abbaszade G; Weggler B; Jing L; Schnelle-Kreis J; Zimmermann R Anal Bioanal Chem; 2015 Aug; 407(20):5911-22. PubMed ID: 25711989 [TBL] [Abstract][Full Text] [Related]
8. Experimental and numerical research on the effects of pressure and CO Zhou Y; Zhang P; Wang S; Cai J; Xi J RSC Adv; 2024 Sep; 14(41):30260-30271. PubMed ID: 39315025 [TBL] [Abstract][Full Text] [Related]
9. Experimental and kinetic modeling investigation of rich premixed toluene flames doped with n-butanol. Li Y; Yuan W; Li T; Li W; Yang J; Qi F Phys Chem Chem Phys; 2018 Apr; 20(16):10628-10636. PubMed ID: 29423471 [TBL] [Abstract][Full Text] [Related]
10. Experimental study and detailed modeling of toluene degradation in a low-pressure stoichiometric premixed CH4/O2/N2 flame. Bakali AE; Dupont L; Lefort B; Lamoureux N; Pauwels JF; Montero M J Phys Chem A; 2007 May; 111(19):3907-21. PubMed ID: 17447734 [TBL] [Abstract][Full Text] [Related]
11. Numerical Investigation of Negative Temperature Coefficient Effects on Sooting Characteristics in a Laminar Co-flow Diffusion Flame. Wu H; Hu Z; Dong X; Zhang S; Cao Z; Lin SL ACS Omega; 2021 Jun; 6(23):15156-15167. PubMed ID: 34151095 [TBL] [Abstract][Full Text] [Related]
12. Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames. Ruwe L; Moshammer K; Hansen N; Kohse-Höinghaus K Phys Chem Chem Phys; 2018 Apr; 20(16):10780-10795. PubMed ID: 29392266 [TBL] [Abstract][Full Text] [Related]
13. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration. Wang J; Richter H; Howard JB; Levendis YA; Carlson J Environ Sci Technol; 2002 Feb; 36(4):797-808. PubMed ID: 11878400 [TBL] [Abstract][Full Text] [Related]
14. Formation and Evolution of Soot in Ethylene Inverse Diffusion Flames in Ozone Atmosphere. Ying Y; Liu D Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903694 [TBL] [Abstract][Full Text] [Related]
15. Experimental study of the effect of CO An X; Cai W; Yang Y; Zheng S; Lu Q RSC Adv; 2023 Mar; 13(12):8173-8181. PubMed ID: 36922945 [TBL] [Abstract][Full Text] [Related]
16. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence. Ni T; Pinson JA; Gupta S; Santoro RJ Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570 [TBL] [Abstract][Full Text] [Related]
17. Flame experiments at the advanced light source: new insights into soot formation processes. Hansen N; Skeen SA; Michelsen HA; Wilson KR; Kohse-Höinghaus K J Vis Exp; 2014 May; (87):. PubMed ID: 24894694 [TBL] [Abstract][Full Text] [Related]
18. Formation and emission of large furans and oxygenated hydrocarbons from flames. Johansson KO; Dillstrom T; Monti M; El Gabaly F; Campbell MF; Schrader PE; Popolan-Vaida DM; Richards-Henderson NK; Wilson KR; Violi A; Michelsen HA Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8374-9. PubMed ID: 27410045 [TBL] [Abstract][Full Text] [Related]
19. Effect of Hydrogen Addition on Soot Formation and Emission in Acetylene Laminar Diffusion Flame. Wang M; Qian X; Suo Y; Ye Y; Li G; Zhang Z ACS Omega; 2023 Jul; 8(28):24893-24900. PubMed ID: 37483231 [TBL] [Abstract][Full Text] [Related]
20. Study on Soot and NOx Formation Characteristics in Ammonia/Ethylene Laminar Co-Flow Diffusion Flame. Li S; Liu Q; Zhang F; Sun J; Wang Y; Gu M Molecules; 2024 Aug; 29(17):. PubMed ID: 39274850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]