These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Molecular characterization of soil organic matter from native vegetation-pasture-sugarcane transitions in Brazil. Oliveira DMDS; Schellekens J; Cerri CEP Sci Total Environ; 2016 Apr; 548-549():450-462. PubMed ID: 26828621 [TBL] [Abstract][Full Text] [Related]
3. Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil. Franco AL; Cherubin MR; Pavinato PS; Cerri CE; Six J; Davies CA; Cerri CC Sci Total Environ; 2015 May; 515-516():30-8. PubMed ID: 25688522 [TBL] [Abstract][Full Text] [Related]
4. Molecular composition of soil organic matter with land-use change along a bi-continental mean annual temperature gradient. Pisani O; Haddix ML; Conant RT; Paul EA; Simpson MJ Sci Total Environ; 2016 Dec; 573():470-480. PubMed ID: 27572539 [TBL] [Abstract][Full Text] [Related]
5. Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage. Franco AL; Bartz ML; Cherubin MR; Baretta D; Cerri CE; Feigl BJ; Wall DH; Davies CA; Cerri CC Sci Total Environ; 2016 Sep; 563-564():160-8. PubMed ID: 27135579 [TBL] [Abstract][Full Text] [Related]
6. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Chen Q; Niu B; Hu Y; Luo T; Zhang G Sci Total Environ; 2020 Apr; 714():136787. PubMed ID: 31982765 [TBL] [Abstract][Full Text] [Related]
7. Changes in soil organic matter composition after Scots pine afforestation in a native European beech forest revealed by analytical pyrolysis (Py-GC/MS). Girona-García A; Badía-Villas D; Jiménez-Morillo NT; González-Pérez JA Sci Total Environ; 2019 Nov; 691():1155-1161. PubMed ID: 31466197 [TBL] [Abstract][Full Text] [Related]
9. Impacts of Spartina alterniflora invasion on soil carbon contents and stability in the Yellow River Delta, China. Xuehui Z; Zhongsheng Z; Zhe L; Min L; Haitao W; Ming J Sci Total Environ; 2021 Jun; 775():145188. PubMed ID: 33631589 [TBL] [Abstract][Full Text] [Related]
10. [Short-term nitrogen deposition changes chemical composition of litter and soil organic matter in a Moso bamboo forest]. Wang YH; Jin YD; Jiang MK; Ma SQ; Chen YC; Cai YJ Ying Yong Sheng Tai Xue Bao; 2023 Oct; 34(10):2593-2600. PubMed ID: 37897265 [TBL] [Abstract][Full Text] [Related]
11. Burn Intensity Drives the Alteration of Phenolic Lignin to (Poly) Aromatic Hydrocarbons as Revealed by Pyrolysis Gas Chromatography-Mass Spectrometry (Py-GC/MS). Chen H; Wang JJ; Ku PJ; Tsui MT; Abney RB; Berhe AA; Zhang Q; Burton SD; Dahlgren RA; Chow AT Environ Sci Technol; 2022 Sep; 56(17):12678-12687. PubMed ID: 35947441 [TBL] [Abstract][Full Text] [Related]
12. Impact of Climate on Soil Organic Matter Composition in Soils of Tropical Volcanic Regions Revealed by EGA-MS and Py-GC/MS. Lyu H; Zhong R; Kilasara M; Hartono A; Sun Z; Funakawa S; Watanabe T Environ Sci Technol; 2024 Jun; 58(22):9646-9657. PubMed ID: 38758106 [TBL] [Abstract][Full Text] [Related]
14. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply. Lewis DB; Feit SJ Glob Chang Biol; 2015 Apr; 21(4):1704-14. PubMed ID: 25394332 [TBL] [Abstract][Full Text] [Related]
15. Application of pyrolysis-gas chromatography/mass spectrometry to study changes in the organic matter of macro- and microaggregates of a Mediterranean soil upon heating. Campo J; Nierop KG; Cammeraat E; Andreu V; Rubio JL J Chromatogr A; 2011 Jul; 1218(30):4817-27. PubMed ID: 21481402 [TBL] [Abstract][Full Text] [Related]
16. Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results. Magrini KA; Evans RJ; Hoover CM; Elam CC; Davis MF Environ Pollut; 2002; 116 Suppl 1():S255-68. PubMed ID: 11833912 [TBL] [Abstract][Full Text] [Related]
18. [Integrated Analysis of Soil Organic Matter Molecular Composition Changes Under Different Land Uses]. Huang SW; Zhao YK; Zhu XY; Liu HL; Liu JJ; Chen S; Chen JY; Zhang AF Huan Jing Ke Xue; 2024 May; 45(5):2848-2858. PubMed ID: 38629547 [TBL] [Abstract][Full Text] [Related]
19. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils. Song XY; Spaccini R; Pan G; Piccolo A Sci Total Environ; 2013 Aug; 458-460():319-30. PubMed ID: 23669578 [TBL] [Abstract][Full Text] [Related]
20. Cupric Oxide (CuO) Oxidation Detects Pyrogenic Carbon in Burnt Organic Matter and Soils. Hatten J; Goñi M PLoS One; 2016; 11(3):e0151957. PubMed ID: 27011012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]