These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36542967)

  • 1. Microporous metallic scaffolds supported liquid infused icephobic construction.
    Wu M; Wang J; Ling S; Wheatley R; Hou X
    J Colloid Interface Sci; 2023 Mar; 634():369-378. PubMed ID: 36542967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallic skeleton promoted two-phase durable icephobic layers.
    Wang J; Wu M; Liu J; Xu F; Hussain T; Scotchford C; Hou X
    J Colloid Interface Sci; 2021 Apr; 587():47-55. PubMed ID: 33360910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crack-Initiated Durable Low-Adhesion Trilayer Icephobic Surfaces with Microcone-Array Anchored Porous Sponges and Polydimethylsiloxane Cover.
    Chen C; Fan P; Zhu D; Tian Z; Zhao H; Wang L; Peng R; Zhong M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6025-6034. PubMed ID: 36688663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase change surfaces with porous metallic structures for long-term anti/de-icing application.
    Yang D; Bao R; Clare AT; Choi KS; Hou X
    J Colloid Interface Sci; 2024 Apr; 660():136-146. PubMed ID: 38241862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function.
    Zhuo Y; Håkonsen V; He Z; Xiao S; He J; Zhang Z
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11972-11978. PubMed ID: 29547258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Icephobic surfaces: Definition and figures of merit.
    Irajizad P; Nazifi S; Ghasemi H
    Adv Colloid Interface Sci; 2019 Jul; 269():203-218. PubMed ID: 31096074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid infused surfaces with anti-icing properties.
    Wang G; Guo Z
    Nanoscale; 2019 Dec; 11(47):22615-22635. PubMed ID: 31755495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Icephobic Behavior of UV-Cured Polymer Networks Incorporated into Slippery Lubricant-Infused Porous Surfaces: Improving SLIPS Durability.
    Coady MJ; Wood M; Wallace GQ; Nielsen KE; Kietzig AM; Lagugné-Labarthet F; Ragogna PJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2890-2896. PubMed ID: 29155549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Icephobic Properties on Surfaces with a Hydrophilic Lubricating Liquid.
    Ozbay S; Yuceel C; Erbil HY
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22067-77. PubMed ID: 26375386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective Icephobicity of Silicone Oil-Infused Oleamide-Polydimethylsiloxane with Enhanced Lubrication Lifetime.
    Lee SJ; Park GD
    ACS Omega; 2022 Jun; 7(24):21156-21162. PubMed ID: 35755368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Icephobic Gradient Polymer Coatings Deposited via iCVD: A Novel Approach for Icing Control and Mitigation.
    Hernández Rodríguez G; Fratschko M; Stendardo L; Antonini C; Resel R; Coclite AM
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11901-11913. PubMed ID: 38400877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Step Fabrication of Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces.
    Zhuo Y; Wang F; Xiao S; He J; Zhang Z
    ACS Omega; 2018 Aug; 3(8):10139-10144. PubMed ID: 31459142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Icephobic performance of one-step silicone-oil-infused slippery coatings: Effects of surface energy, oil and nanoparticle contents.
    Cui W; Pakkanen TA
    J Colloid Interface Sci; 2020 Jan; 558():251-258. PubMed ID: 31593858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing durable icephobic surfaces.
    Golovin K; Kobaku SP; Lee DH; DiLoreto ET; Mabry JM; Tuteja A
    Sci Adv; 2016 Mar; 2(3):e1501496. PubMed ID: 26998520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oil-Infused Superhydrophobic Silicone Material for Low Ice Adhesion with Long-Term Infusion Stability.
    Yeong YH; Wang C; Wynne KJ; Gupta MC
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):32050-32059. PubMed ID: 27797475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of sustaining liquid water within rough icephobic surfaces to achieve ultra-low ice adhesion.
    Zhao TY; Jones PR; Patankar NA
    Sci Rep; 2019 Jan; 9(1):258. PubMed ID: 30670738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A predictive framework for the design and fabrication of icephobic polymers.
    Golovin K; Tuteja A
    Sci Adv; 2017 Sep; 3(9):e1701617. PubMed ID: 28948227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Durability of Icephobic Coatings: A Review.
    Nistal A; Sierra-Martín B; Fernández-Barbero A
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Icephobic Performance of Multi-Scale Laser-Textured Aluminum Surfaces for Aeronautic Applications.
    Milles S; Vercillo V; Alamri S; Aguilar-Morales AI; Kunze T; Bonaccurso E; Lasagni AF
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33430008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.