BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36543167)

  • 1. Intron-rich dinoflagellate genomes driven by Introner transposable elements of unprecedented diversity.
    Roy SW; Gozashti L; Bowser BA; Weinstein BN; Larue GE; Corbett-Detig R
    Curr Biol; 2023 Jan; 33(1):189-196.e4. PubMed ID: 36543167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transposable elements drive intron gain in diverse eukaryotes.
    Gozashti L; Roy SW; Thornlow B; Kramer A; Ares M; Corbett-Detig R
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2209766119. PubMed ID: 36417430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Birth of new spliceosomal introns in fungi by multiplication of introner-like elements.
    van der Burgt A; Severing E; de Wit PJ; Collemare J
    Curr Biol; 2012 Jul; 22(13):1260-5. PubMed ID: 22658596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The complex intron landscape and massive intron invasion in a picoeukaryote provides insights into intron evolution.
    Verhelst B; Van de Peer Y; Rouzé P
    Genome Biol Evol; 2013; 5(12):2393-401. PubMed ID: 24273312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Introner-Like Elements in fungi Are Involved in Parallel Gains of Spliceosomal Introns.
    Collemare J; Beenen HG; Crous PW; de Wit PJ; van der Burgt A
    PLoS One; 2015; 10(6):e0129302. PubMed ID: 26046656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages.
    Hudson AJ; McWatters DC; Bowser BA; Moore AN; Larue GE; Roy SW; Russell AG
    BMC Evol Biol; 2019 Aug; 19(1):162. PubMed ID: 31375061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary convergence on highly-conserved 3' intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome.
    Irimia M; Roy SW
    PLoS Genet; 2008 Aug; 4(8):e1000148. PubMed ID: 18688272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin and Spread of Spliceosomal Introns: Insights from the Fungal Clade Zymoseptoria.
    Wu B; Macielog AI; Hao W
    Genome Biol Evol; 2017 Oct; 9(10):2658-2667. PubMed ID: 29048531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp.
    Farhat S; Le P; Kayal E; Noel B; Bigeard E; Corre E; Maumus F; Florent I; Alberti A; Aury JM; Barbeyron T; Cai R; Da Silva C; Istace B; Labadie K; Marie D; Mercier J; Rukwavu T; Szymczak J; Tonon T; Alves-de-Souza C; Rouzé P; Van de Peer Y; Wincker P; Rombauts S; Porcel BM; Guillou L
    BMC Biol; 2021 Jan; 19(1):1. PubMed ID: 33407428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Common Is Parallel Intron Gain? Rapid Evolution Versus Independent Creation in Recently Created Introns in Daphnia.
    Roy SW
    Mol Biol Evol; 2016 Aug; 33(8):1902-6. PubMed ID: 27189562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. At the origin of spliceosomal introns: Is multiplication of introner-like elements the main mechanism of intron gain in fungi?
    Collemare J; van der Burgt A; de Wit PJ
    Commun Integr Biol; 2013 Mar; 6(2):e23147. PubMed ID: 23750299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intron Invasions Trace Algal Speciation and Reveal Nearly Identical Arctic and Antarctic Micromonas Populations.
    Simmons MP; Bachy C; Sudek S; van Baren MJ; Sudek L; Ares M; Worden AZ
    Mol Biol Evol; 2015 Sep; 32(9):2219-35. PubMed ID: 25998521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin and evolution of spliceosomal introns.
    Rogozin IB; Carmel L; Csuros M; Koonin EV
    Biol Direct; 2012 Apr; 7():11. PubMed ID: 22507701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is Genome Complexity a Consequence of Inefficient Selection? Evidence from Intron Creation in Nonrecombining Regions.
    Roy SW
    Mol Biol Evol; 2016 Dec; 33(12):3088-3094. PubMed ID: 27655009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolutionary gain of spliceosomal introns: sequence and phase preferences.
    Qiu WG; Schisler N; Stoltzfus A
    Mol Biol Evol; 2004 Jul; 21(7):1252-63. PubMed ID: 15014153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic analysis of intron size and abundance parameters in diverse lineages.
    Wu J; Xiao J; Wang L; Zhong J; Yin H; Wu S; Zhang Z; Yu J
    Sci China Life Sci; 2013 Oct; 56(10):968-74. PubMed ID: 24022126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spliceosomal intron insertions in genome compacted ray-finned fishes as evident from phylogeny of MC receptors, also supported by a few other GPCRs.
    Kumar A; Bhandari A; Sinha R; Goyal P; Grapputo A
    PLoS One; 2011; 6(8):e22046. PubMed ID: 21850219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomic analysis of fungal genomes reveals intron-rich ancestors.
    Stajich JE; Dietrich FS; Roy SW
    Genome Biol; 2007; 8(10):R223. PubMed ID: 17949488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial group II introns generate genetic diversity by circularization and trans-splicing from a population of intron-invaded mRNAs.
    LaRoche-Johnston F; Monat C; Coulombe S; Cousineau B
    PLoS Genet; 2018 Nov; 14(11):e1007792. PubMed ID: 30462638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expansion and transformation of the minor spliceosomal system in the slime mold Physarum polycephalum.
    Larue GE; Eliáš M; Roy SW
    Curr Biol; 2021 Jul; 31(14):3125-3131.e4. PubMed ID: 34015249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.