BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36543365)

  • 1. Cu(I)/Cu(II) Creutz-Taube Mixed-Valence 2D Coordination Polymers.
    Li N; Wu G; Xi S; Wei F; Lin M; Qiu J; Zheng JC; Yi J; Seng DHL; Lee CJJ; Repaka DVM; Liu X; Wong ZM; Zhu Q; Yang SW; Luo HK
    Small Methods; 2023 Jan; 7(1):e2201166. PubMed ID: 36543365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of mixed-valence chemistry: inventing new analogues of the Creutz-Taube ion.
    Kaim W; Klein A; Glöckle M
    Acc Chem Res; 2000 Nov; 33(11):755-63. PubMed ID: 11087312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excited State Mixed-Valence Complexes: From the Special Pair to the Creutz-Taube Ion and Beyond.
    Low PJ
    Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202217082. PubMed ID: 36691301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-dimensional mixed-valence Cu(II)/Cu(I) coordination polymer constructed from 2-(pyridin-3-yl)-1H-imidazole-4,5-dicarboxylate.
    Zhang LY; Lu LP; Feng SS
    Acta Crystallogr C Struct Chem; 2016 Aug; 72(Pt 8):652-7. PubMed ID: 27487340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [(Cyclen)(4)Ru(4)(pz)(4)](9+): a Creutz-Taube square.
    Lau VC; Berben LA; Long JR
    J Am Chem Soc; 2002 Aug; 124(31):9042-3. PubMed ID: 12148995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Excited-State Creutz-Taube Ion.
    Pieslinger GE; Ramírez-Wierzbicki I; Cadranel A
    Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202211747. PubMed ID: 36161441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational Coherences of the Photoinduced Mixed-Valent Creutz-Taube Ion Revealed by Excited State Dynamics.
    Šrut A; Krewald V
    J Phys Chem A; 2023 Nov; 127(47):9911-9920. PubMed ID: 37883652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed-valence copper(I,II) complexes with 4-(1H-pyrazol-1-yl)-6-R-pyrimidines: from ionic structures to coordination polymers.
    Vinogradova KA; Krivopalov VP; Nikolaenkova EB; Pervukhina NV; Naumov DY; Boguslavsky EG; Bushuev MB
    Dalton Trans; 2016 Jan; 45(2):515-24. PubMed ID: 26600314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed valence Creutz-Taube ion analogues incorporating thiacrowns: synthesis, structure, physical properties, and computational studies.
    Adams H; Costa PJ; Newell M; Vickers SJ; Ward MD; Félix V; Thomas JA
    Inorg Chem; 2008 Dec; 47(24):11633-43. PubMed ID: 19012395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biopyrrin Pigments: From Heme Metabolites to Redox-Active Ligands and Luminescent Radicals.
    Tomat E; Curtis CJ
    Acc Chem Res; 2021 Dec; 54(24):4584-4594. PubMed ID: 34870973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic electron transfer: sharpening a fuzzy border in mixed valency and extending mixed valency across supramolecular systems.
    Kubiak CP
    Inorg Chem; 2013 May; 52(10):5663-76. PubMed ID: 23320756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Theoretical Assessment of Spin and Charge States in Binuclear Cobalt-Ruthenium Complexes: Implications for a Creutz-Taube Model Ion Separated by a C
    da Silva AR; de Almeida JS; Rivelino R
    J Phys Chem A; 2020 Dec; 124(51):10826-10837. PubMed ID: 33296201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductive Copper Benzenehexathiol Coordination Polymer as a Hydrogen Evolution Catalyst.
    Huang X; Yao H; Cui Y; Hao W; Zhu J; Xu W; Zhu D
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40752-40759. PubMed ID: 29086557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective binding, self-assembly and nanopatterning of the Creutz-Taube ion on surfaces.
    Wang Y; Lieberman M; Hang Q; Bernstein G
    Int J Mol Sci; 2009 Feb; 10(2):533-558. PubMed ID: 19333420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed-valence ruthenium complexes rotating through a conformational Robin-Day continuum.
    Parthey M; Gluyas JB; Fox MA; Low PJ; Kaupp M
    Chemistry; 2014 Jun; 20(23):6895-908. PubMed ID: 24740610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syntheses, structural analyses and redox kinetics of four-coordinate [CuL2]2+ and five-coordinate [CuL2(solvent)]2+ complexes (L = 6,6'-dimethyl-2,2'-bipyridine or 2,9-dimethyl-1,10-phenanthroline): completely gated reduction reaction of [Cu(dmp)2]2+ in nitromethane.
    Itoh S; Kishikawa N; Suzuki T; Takagi HD
    Dalton Trans; 2005 Mar; (6):1066-78. PubMed ID: 15739009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Significant Two-Dimensional Structural Transformation in a Coordination Polymer that Changes Its Electronic and Protonic Behavior.
    Jing Y; Yoshida Y; Komatsu T; Kitagawa H
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202303778. PubMed ID: 37171043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination chemistry of conformation-flexible 1,2,3,4,5,6-cyclohexanehexacarboxylate: trapping various conformations in metal-organic frameworks.
    Wang J; Lin ZJ; Ou YC; Shen Y; Herchel R; Tong ML
    Chemistry; 2008; 14(24):7218-35. PubMed ID: 18618562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D conductive MOFs with sufficient redox sites: reduced graphene oxide/Cu-benzenehexathiolate composites as high capacity anode materials for lithium-ion batteries.
    Meng C; Hu P; Chen H; Cai Y; Zhou H; Jiang Z; Zhu X; Liu Z; Wang C; Yuan A
    Nanoscale; 2021 Apr; 13(16):7751-7760. PubMed ID: 33861280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Cu(I) and Cu(I)-Cu(II) mixed-valence clusters to 2D Cu(II) and Cu(I) coordination polymers supported by a flexible bis-tetrazole organosulfur ligand.
    Gómez-Paz O; Carballo R; Lago AB; Prieto I; Vázquez-López EM
    Dalton Trans; 2023 Aug; 52(31):10975-10986. PubMed ID: 37492943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.