These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36543538)

  • 1. Topographically Localized Modulation of Tectal Cell Spatial Tuning by Complex Natural Scenes.
    Sainsbury TTJ; Diana G; Meyer MP
    eNeuro; 2023 Jan; 10(1):. PubMed ID: 36543538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic response properties of visual neurons and context-dependent surround effects on receptive fields in the tectum of the salamander Plethodon shermani.
    Schuelert N; Dicke U
    Neuroscience; 2005; 134(2):617-32. PubMed ID: 15975725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
    Förster D; Helmbrecht TO; Mearns DS; Jordan L; Mokayes N; Baier H
    Elife; 2020 Oct; 9():. PubMed ID: 33044168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visuomotor transformations underlying hunting behavior in zebrafish.
    Bianco IH; Engert F
    Curr Biol; 2015 Mar; 25(7):831-46. PubMed ID: 25754638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory and visual maps of space in the optic tectum of the owl.
    Knudsen EI
    J Neurosci; 1982 Sep; 2(9):1177-94. PubMed ID: 7119872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats.
    Berman N; Cynader M
    J Physiol; 1972 Jul; 224(2):363-89. PubMed ID: 5071401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel Channels for Motion Feature Extraction in the Pretectum and Tectum of Larval Zebrafish.
    Wang K; Hinz J; Zhang Y; Thiele TR; Arrenberg AB
    Cell Rep; 2020 Jan; 30(2):442-453.e6. PubMed ID: 31940488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretched and upside-down maps of auditory space in the optic tectum of blind-reared owls; acoustic basis and behavioral correlates.
    Knudsen EI; Esterly SD; du Lac S
    J Neurosci; 1991 Jun; 11(6):1727-47. PubMed ID: 2045884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses to Pop-Out Stimuli in the Barn Owl's Optic Tectum Can Emerge through Stimulus-Specific Adaptation.
    Dutta A; Wagner H; Gutfreund Y
    J Neurosci; 2016 Apr; 36(17):4876-87. PubMed ID: 27122042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optic tectal superficial interneurons detect motion in larval zebrafish.
    Yin C; Li X; Du J
    Protein Cell; 2019 Apr; 10(4):238-248. PubMed ID: 30421356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopaminergic modulation of visual responses in toads. II. Influences of apomorphine on retinal ganglion cells and tectal cells.
    Glagow M; Ewert JP
    J Comp Physiol A; 1997 Jan; 180(1):11-8. PubMed ID: 9008366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Profiles of Visual-, Auditory-, and Water Flow-Responsive Neurons in the Zebrafish Tectum.
    Thompson AW; Vanwalleghem GC; Heap LA; Scott EK
    Curr Biol; 2016 Mar; 26(6):743-54. PubMed ID: 26923787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hearing impairment induces frequency-specific adjustments in auditory spatial tuning in the optic tectum of young owls.
    Gold JI; Knudsen EI
    J Neurophysiol; 1999 Nov; 82(5):2197-209. PubMed ID: 10561399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional elimination of excitatory feedforward inputs underlies developmental refinement of visual receptive fields in zebrafish.
    Zhang M; Liu Y; Wang SZ; Zhong W; Liu BH; Tao HW
    J Neurosci; 2011 Apr; 31(14):5460-9. PubMed ID: 21471382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum.
    Niell CM; Smith SJ
    Neuron; 2005 Mar; 45(6):941-51. PubMed ID: 15797554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional variation in receptive field properties of tectal neurons in pigeons.
    Gu Y; Wang Y; Wang S
    Brain Behav Evol; 2000 Apr; 55(4):221-8. PubMed ID: 10940664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation-induced modification of motion selectivity tuning in visual tectal neurons of adult zebrafish.
    Hollmann V; Lucks V; Kurtz R; Engelmann J
    J Neurophysiol; 2015 Nov; 114(5):2893-902. PubMed ID: 26378206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contextual influences on the directional responses of tectal cells in pigeons.
    Sun HJ; Zhao J; Southall TL; Xu B
    Vis Neurosci; 2002; 19(2):133-44. PubMed ID: 12385626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Input from torus longitudinalis drives binocularity and spatial summation in zebrafish optic tectum.
    Tesmer AL; Fields NP; Robles E
    BMC Biol; 2022 Jan; 20(1):24. PubMed ID: 35073895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual instruction of the neural map of auditory space in the developing optic tectum.
    Knudsen EI; Brainard MS
    Science; 1991 Jul; 253(5015):85-7. PubMed ID: 2063209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.