BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36543886)

  • 1. The potential of multistress tolerant yeast, Saccharomycodes ludwigii, for second-generation bioethanol production.
    Pilap W; Thanonkeo S; Klanrit P; Thanonkeo P
    Sci Rep; 2022 Dec; 12(1):22062. PubMed ID: 36543886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass.
    Dolpatcha S; Phong HX; Thanonkeo S; Klanrit P; Yamada M; Thanonkeo P
    Sci Rep; 2023 Nov; 13(1):21000. PubMed ID: 38017261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J; Singh S; Nain L
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol production from dilute-acid steam exploded lignocellulosic feedstocks using an isolated multistress-tolerant Pichia kudriavzevii strain.
    Yuan SF; Guo GL; Hwang WS
    Microb Biotechnol; 2017 Nov; 10(6):1581-1590. PubMed ID: 28474425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compost as an untapped niche for thermotolerant yeasts capable of high-temperature ethanol production.
    Avchar R; Lanjekar V; Dhakephalkar PK; Dagar SS; Baghela A
    Lett Appl Microbiol; 2022 Jan; 74(1):109-121. PubMed ID: 34714552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological comparisons among Spathaspora passalidarum, Spathaspora arborariae, and Scheffersomyces stipitis reveal the bottlenecks for their use in the production of second-generation ethanol.
    Campos VJ; Ribeiro LE; Albuini FM; de Castro AG; Fontes PP; da Silveira WB; Rosa CA; Fietto LG
    Braz J Microbiol; 2022 Jun; 53(2):977-990. PubMed ID: 35174461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts.
    Palmqvist E; Grage H; Meinander NQ; Hahn-Hägerdal B
    Biotechnol Bioeng; 1999 Apr; 63(1):46-55. PubMed ID: 10099580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate
    Pandey AK; Kumar M; Kumari S; Kumari P; Yusuf F; Jakeer S; Naz S; Chandna P; Bhatnagar I; Gaur NA
    Biotechnol Biofuels; 2019; 12():40. PubMed ID: 30858877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprospecting thermotolerant yeasts from distillery effluent and molasses for high-temperature ethanol production.
    Avchar R; Lanjekar V; Baghela A
    J Appl Microbiol; 2022 Feb; 132(2):1134-1151. PubMed ID: 34487585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving furfural tolerance in a xylose-fermenting yeast Spathaspora passalidarum CMUWF1-2 via adaptive laboratory evolution.
    Saengphing T; Sattayawat P; Kalawil T; Suwannarach N; Kumla J; Yamada M; Panbangred W; Rodrussamee N
    Microb Cell Fact; 2024 Mar; 23(1):80. PubMed ID: 38481222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylose consumption and ethanol production by Pichia guilliermondii and Candida oleophila in the presence of furans, phenolic compounds, and organic acids commonly produced during the pre-treatment of plant biomass.
    da Silva RR; Zaiter MA; Boscolo M; da Silva R; Gomes E
    Braz J Microbiol; 2023 Jun; 54(2):753-759. PubMed ID: 36826705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol Production Potential of Ethanol-Tolerant Saccharomyces and Non-Saccharomyces Yeasts.
    Thammasittirong SN; Chamduang T; Phonrod U; Sriroth K
    Pol J Microbiol; 2012 Sep; 61(3):219-221. PubMed ID: 29334070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production.
    Hemansi ; Himanshu ; Patel AK; Saini JK; Singhania RR
    Bioresour Technol; 2022 Jan; 344(Pt B):126247. PubMed ID: 34740795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL; Slininger PJ; Gorsich SW
    Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 II: production of xylitol and ethanol in the presence of inhibitors.
    Vajzovic A; Bura R; Kohlmeier K; Doty SL
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1453-63. PubMed ID: 22711018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors.
    Lu Y; Cheng YF; He XP; Guo XN; Zhang BR
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):73-80. PubMed ID: 21698486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345.
    Du C; Li Y; Zhao X; Pei X; Yuan W; Bai F; Jiang Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2845-2855. PubMed ID: 30706114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain.
    Mattam AJ; Kuila A; Suralikerimath N; Choudary N; Rao PV; Velankar HR
    Biotechnol Biofuels; 2016; 9():157. PubMed ID: 27462368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.
    Li B; Wang L; Wu YJ; Xia ZY; Yang BX; Tang YQ
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.