These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 3654401)
1. Mutual and self-sensitivity among antibiotically active mutant derivatives from the inactive degenerate Aspergillus versicolor N5. Basu S; Majumdar S; Das SK; Bose SK J Appl Bacteriol; 1987 Jul; 63(1):53-61. PubMed ID: 3654401 [TBL] [Abstract][Full Text] [Related]
2. Characterization of versilin-sensitive sites in self-sensitive producer and sensitive non-producer or unrelated organism. Basu S; Bose SK; Bose SK J Appl Bacteriol; 1989 Aug; 67(2):191-200. PubMed ID: 2808186 [TBL] [Abstract][Full Text] [Related]
3. Role of selective pressure by screening organisms in the development of producer mutant isolates of different antibiotic markers. Basu S; Das SK; Majumdar S; Bhattacharyya D; Bose SK J Appl Bacteriol; 1986 Dec; 61(6):481-9. PubMed ID: 3558163 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of mycobacillin and versicolin as agricultural fungicides. III. Growth pattern and antibiotic production in soil by Aspergillus versicolor. Chattopadhyay JP; De BK; Nandi J; Bose SK J Antibiot (Tokyo); 1977 Mar; 30(3):234-8. PubMed ID: 863784 [TBL] [Abstract][Full Text] [Related]
5. Mycoversilin, a new antifungal antibiotic. I. Fermentation, isolation and biological properties. Samanta AK; Bose SK J Antibiot (Tokyo); 1984 Jul; 37(7):728-32. PubMed ID: 6469866 [TBL] [Abstract][Full Text] [Related]
6. Mycoversilin, a new antifungal antibiotic. III. Mechanism of action on a filamentous fungus Trichophyton rubrum. Kole HK; Bose SK J Antibiot (Tokyo); 1984 Oct; 37(10):1238-45. PubMed ID: 6501095 [TBL] [Abstract][Full Text] [Related]
7. Multiplicity of antibiotic production in Aspergillus versicolor N5 under mutagenesis: versilin a new antifungal antibiotic. Basu S; Das SK; Majumdar S; Bose SK Indian J Exp Biol; 1987 Mar; 25(3):207-8. PubMed ID: 3666820 [No Abstract] [Full Text] [Related]
8. Mycoversilin, a new antifungal antibiotic from a mutant derivative of Aspergillus versicolor. Samanta AK; Kole HK; Goswami SK; Bose SK Indian J Exp Biol; 1983 Oct; 21(10):577-8. PubMed ID: 6674142 [No Abstract] [Full Text] [Related]
9. Action of mycobacillin on filamentous fungi. Halder A; Bose SK Acta Microbiol Pol B; 1970; 2(1):25-30. PubMed ID: 4986826 [No Abstract] [Full Text] [Related]
10. Mycoversilin, a new antifungal antibiotic. II. Structure elucidation. Samanta AK; Bose SK; Mahato SB J Antibiot (Tokyo); 1984 Jul; 37(7):733-7. PubMed ID: 6469867 [TBL] [Abstract][Full Text] [Related]
11. Development of molecular tools for the mulundocandin producer Aspergillus sydowii: DNA-mediated transformation and reporter gene expression. Schmitt EK; Eilinghoff B; Olliger R; Decker H; Kück U Appl Microbiol Biotechnol; 2002 Apr; 58(5):625-31. PubMed ID: 11956745 [TBL] [Abstract][Full Text] [Related]
12. Studies on versicolin, a new antifungal antibiotic from Aspergillus versicolor. 3. Relationship between antibiotic synthesis and basic cellular metabolism. Dhar AK; Bose SK Acta Microbiol Pol; 1968; 17(4):327-30. PubMed ID: 4178170 [No Abstract] [Full Text] [Related]
13. Antifungal activity of a novel chromene dimer. Abrunhosa L; Costa M; Areias F; Venâncio A; Proença F J Ind Microbiol Biotechnol; 2007 Dec; 34(12):787-92. PubMed ID: 17899234 [TBL] [Abstract][Full Text] [Related]
14. Activity and post antifungal effect of chlorpromazine and trifluopherazine against Aspergillus, Scedosporium and zygomycetes. Vitale RG; Afeltra J; Meis JF; Verweij PE Mycoses; 2007 Jul; 50(4):270-6. PubMed ID: 17576318 [TBL] [Abstract][Full Text] [Related]
15. New 2H-tetrahydro-1, 3, 5-thiadiazine-2-thiones incorporating glycine and glycinamide as potential antifungal agents. Aboul-Fadl T; Hussein MA; El-Shorbagi AN; Khallil AR Arch Pharm (Weinheim); 2002 Nov; 335(9):438-42. PubMed ID: 12447917 [TBL] [Abstract][Full Text] [Related]
16. Effect of anilinopyrimidine resistance on aflatoxin production and fitness parameters in Aspergillus parasiticus Speare. Markoglou AN; Doukas EG; Malandrakis AA Int J Food Microbiol; 2011 Mar; 146(2):130-6. PubMed ID: 21411166 [TBL] [Abstract][Full Text] [Related]
17. Phenylpyrrole-resistance and aflatoxin production in Aspergillus parasiticus Speare. Markoglou AN; Doukas EG; Ziogas BN Int J Food Microbiol; 2008 Oct; 127(3):268-75. PubMed ID: 18762349 [TBL] [Abstract][Full Text] [Related]
18. Effect of DMI-resistance mechanisms on cross-resistance patterns, fitness parameters and aflatoxin production in Aspergillus parasiticus Speare. Doukas EG; Markoglou AN; Vontas JG; Ziogas BN Fungal Genet Biol; 2012 Oct; 49(10):792-801. PubMed ID: 22906850 [TBL] [Abstract][Full Text] [Related]
19. Evidence of self-inhibition by filamentous fungi accounts for unidirectional hyphal growth in colonies. Bottone EJ; Nagarsheth N; Chiu K Can J Microbiol; 1998 Apr; 44(4):390-3. PubMed ID: 9674112 [TBL] [Abstract][Full Text] [Related]
20. Molecular bases of antifungal resistance in filamentous fungi. Sharma C; Chowdhary A Int J Antimicrob Agents; 2017 Nov; 50(5):607-616. PubMed ID: 28705674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]