These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36544394)

  • 1. Bait-ER: A Bayesian method to detect targets of selection in Evolve-and-Resequence experiments.
    Barata C; Borges R; Kosiol C
    J Evol Biol; 2023 Jan; 36(1):29-44. PubMed ID: 36544394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Allele Frequencies from Ultra-low Coverage Pool-Seq Samples in Evolve-and-Resequence Experiments.
    Tilk S; Bergland A; Goodman A; Schmidt P; Petrov D; Greenblum S
    G3 (Bethesda); 2019 Dec; 9(12):4159-4168. PubMed ID: 31636085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Positive Selection in Populations Using Genetic Data.
    Koropoulis A; Alachiotis N; Pavlidis P
    Methods Mol Biol; 2020; 2090():87-123. PubMed ID: 31975165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clear: Composition of Likelihoods for Evolve and Resequence Experiments.
    Iranmehr A; Akbari A; Schlötterer C; Bafna V
    Genetics; 2017 Jun; 206(2):1011-1023. PubMed ID: 28396506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian Inference of Natural Selection from Allele Frequency Time Series.
    Schraiber JG; Evans SN; Slatkin M
    Genetics; 2016 May; 203(1):493-511. PubMed ID: 27010022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide selection signatures reveal widespread synergistic effects of two different stressors in
    Burny C; Nolte V; Dolezal M; Schlötterer C
    Proc Biol Sci; 2022 Oct; 289(1985):20221857. PubMed ID: 36259211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying Selection with Pool-Seq Time Series Data.
    Taus T; Futschik A; Schlötterer C
    Mol Biol Evol; 2017 Nov; 34(11):3023-3034. PubMed ID: 28961717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased time sampling in an evolve-and-resequence experiment with outcrossing Saccharomyces cerevisiae reveals multiple paths of adaptive change.
    Phillips MA; Kutch IC; Long AD; Burke MK
    Mol Ecol; 2020 Dec; 29(24):4898-4912. PubMed ID: 33135198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating Pool-seq uncertainties into demographic inference.
    Carvalho J; Morales HE; Faria R; Butlin RK; Sousa VC
    Mol Ecol Resour; 2023 Oct; 23(7):1737-1755. PubMed ID: 37475177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A population-genomic approach for estimating selection on polygenic traits in heterogeneous environments.
    Gompert Z
    Mol Ecol Resour; 2021 Jul; 21(5):1529-1546. PubMed ID: 33682340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the molecular architecture of adaptation via evolve and resequence experiments.
    Long A; Liti G; Luptak A; Tenaillon O
    Nat Rev Genet; 2015 Oct; 16(10):567-82. PubMed ID: 26347030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking software tools for detecting and quantifying selection in evolve and resequencing studies.
    Vlachos C; Burny C; Pelizzola M; Borges R; Futschik A; Kofler R; Schlötterer C
    Genome Biol; 2019 Aug; 20(1):169. PubMed ID: 31416462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WFABC: a Wright-Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data.
    Foll M; Shim H; Jensen JD
    Mol Ecol Resour; 2015 Jan; 15(1):87-98. PubMed ID: 24834845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SmileFinder: a resampling-based approach to evaluate signatures of selection from genome-wide sets of matching allele frequency data in two or more diploid populations.
    Guiblet WM; Zhao K; O'Brien SJ; Massey SE; Roca AL; Oleksyk TK
    Gigascience; 2015; 4():1. PubMed ID: 25838885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-locus analysis of genomic time series data from experimental evolution.
    Terhorst J; Schlötterer C; Song YS
    PLoS Genet; 2015 Apr; 11(4):e1005069. PubMed ID: 25849855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A guide for the design of evolve and resequencing studies.
    Kofler R; Schlötterer C
    Mol Biol Evol; 2014 Feb; 31(2):474-83. PubMed ID: 24214537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of genomic change during evolutionary rescue in the seed beetle Callosobruchus maculatus.
    Rêgo A; Messina FJ; Gompert Z
    Mol Ecol; 2019 May; 28(9):2136-2154. PubMed ID: 30963641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial Molecular-Level Response to Artificial Selection for Increased Aerobic Metabolism Occurs Primarily through Changes in Gene Expression.
    Konczal M; Babik W; Radwan J; Sadowska ET; Koteja P
    Mol Biol Evol; 2015 Jun; 32(6):1461-73. PubMed ID: 25739734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. signeR: an empirical Bayesian approach to mutational signature discovery.
    Rosales RA; Drummond RD; Valieris R; Dias-Neto E; da Silva IT
    Bioinformatics; 2017 Jan; 33(1):8-16. PubMed ID: 27591080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine Mapping without Phenotyping: Identification of Selection Targets in Secondary Evolve and Resequence Experiments.
    Langmüller AM; Dolezal M; Schlötterer C
    Genome Biol Evol; 2021 Aug; 13(8):. PubMed ID: 34190980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.