BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 36544480)

  • 41. Multi-omics analysis: Paving the path toward achieving precision medicine in cancer treatment and immuno-oncology.
    Raufaste-Cazavieille V; Santiago R; Droit A
    Front Mol Biosci; 2022; 9():962743. PubMed ID: 36304921
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-Omics Data Integration and Mapping of Altered Kinases to Pathways Reveal Gonadotropin Hormone Signaling in Glioblastoma.
    Jayaram S; Gupta MK; Raju R; Gautam P; Sirdeshmukh R
    OMICS; 2016 Dec; 20(12):736-746. PubMed ID: 27930095
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases.
    Sun YV; Hu YJ
    Adv Genet; 2016; 93():147-90. PubMed ID: 26915271
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations.
    Tebani A; Afonso C; Marret S; Bekri S
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27649151
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploring the "gene-protein-metabolite" network of coronary heart disease with phlegm and blood stasis syndrome by integrated multi-omics strategy.
    Yang G; Zhou S; He H; Shen Z; Liu Y; Hu J; Wang J
    Front Pharmacol; 2022; 13():1022627. PubMed ID: 36523490
    [No Abstract]   [Full Text] [Related]  

  • 46. A study on multi-omic oscillations in Escherichia coli metabolic networks.
    Bardozzo F; Lió P; Tagliaferri R
    BMC Bioinformatics; 2018 Jul; 19(Suppl 7):194. PubMed ID: 30066640
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration.
    Wieder C; Cooke J; Frainay C; Poupin N; Bowler R; Jourdan F; Kechris KJ; Lai RP; Ebbels T
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The promise of multi-omics approaches to discover biological alterations with clinical relevance in Alzheimer's disease.
    Clark C; Rabl M; Dayon L; Popp J
    Front Aging Neurosci; 2022; 14():1065904. PubMed ID: 36570537
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-modal intermediate integrative methods in neuropsychiatric disorders: A review.
    Wang Y; Tang S; Ma R; Zamit I; Wei Y; Pan Y
    Comput Struct Biotechnol J; 2022; 20():6149-6162. PubMed ID: 36420153
    [TBL] [Abstract][Full Text] [Related]  

  • 50. HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction.
    Vangimalla RR; Sreevalsan-Nair J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1880-1886. PubMed ID: 34891654
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis.
    Zhao L; Dong Q; Luo C; Wu Y; Bu D; Qi X; Luo Y; Zhao Y
    Comput Struct Biotechnol J; 2021; 19():2719-2725. PubMed ID: 34093987
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Omics data integration in computational biology viewed through the prism of machine learning paradigms.
    Fouché A; Zinovyev A
    Front Bioinform; 2023; 3():1191961. PubMed ID: 37600970
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A network embedding based method for partial multi-omics integration in cancer subtyping.
    Xu H; Gao L; Huang M; Duan R
    Methods; 2021 Aug; 192():67-76. PubMed ID: 32805397
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational approaches for network-based integrative multi-omics analysis.
    Agamah FE; Bayjanov JR; Niehues A; Njoku KF; Skelton M; Mazandu GK; Ederveen THA; Mulder N; Chimusa ER; 't Hoen PAC
    Front Mol Biosci; 2022; 9():967205. PubMed ID: 36452456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational Oncology in the Multi-Omics Era: State of the Art.
    de Anda-Jáuregui G; Hernández-Lemus E
    Front Oncol; 2020; 10():423. PubMed ID: 32318338
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data.
    Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H
    BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Confero: an integrated contrast data and gene set platform for computational analysis and biological interpretation of omics data.
    Hermida L; Poussin C; Stadler MB; Gubian S; Sewer A; Gaidatzis D; Hotz HR; Martin F; Belcastro V; Cano S; Peitsch MC; Hoeng J
    BMC Genomics; 2013 Jul; 14():514. PubMed ID: 23895370
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Machine learning: its challenges and opportunities in plant system biology.
    Hesami M; Alizadeh M; Jones AMP; Torkamaneh D
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3507-3530. PubMed ID: 35575915
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi 'omic data integration: A review of concepts, considerations, and approaches.
    Santiago-Rodriguez TM; Hollister EB
    Semin Perinatol; 2021 Oct; 45(6):151456. PubMed ID: 34256961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.