These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36544729)

  • 1. High-throughput exploration of activity and stability for identifying photoelectrochemical water splitting materials.
    Jenewein KJ; Thienhaus S; Kormányos A; Ludwig A; Cherevko S
    Chem Sci; 2022 Nov; 13(46):13774-13781. PubMed ID: 36544729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accessing In Situ Photocorrosion under Realistic Light Conditions: Photoelectrochemical Scanning Flow Cell Coupled to Online ICP-MS.
    Jenewein KJ; Kormányos A; Knöppel J; Mayrhofer KJJ; Cherevko S
    ACS Meas Sci Au; 2021 Oct; 1(2):74-81. PubMed ID: 36785747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Exploration of Metal Vanadate Thin-Film Systems (M-V-O, M = Cu, Ag, W, Cr, Co, Fe) for Solar Water Splitting: Composition, Structure, Stability, and Photoelectrochemical Properties.
    Kumari S; Junqueira JRC; Schuhmann W; Ludwig A
    ACS Comb Sci; 2020 Dec; 22(12):844-857. PubMed ID: 33103893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocorrosion of WO
    Knöppel J; Kormányos A; Mayerhöfer B; Hofer A; Bierling M; Bachmann J; Thiele S; Cherevko S
    ACS Phys Chem Au; 2021 Nov; 1(1):6-13. PubMed ID: 36855660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface-engineered Z-scheme of BiVO
    Mane P; Bae H; Burungale V; Lee SW; Misra M; Parbat H; Kadam AN; Ha JS
    Chemosphere; 2022 Dec; 308(Pt 1):136166. PubMed ID: 36037961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial Synthesis and High-Throughput Characterization of Fe-V-O Thin-Film Materials Libraries for Solar Water Splitting.
    Kumari S; Gutkowski R; Junqueira JRC; Kostka A; Hengge K; Scheu C; Schuhmann W; Ludwig A
    ACS Comb Sci; 2018 Sep; 20(9):544-553. PubMed ID: 30102852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting.
    Yang W; Prabhakar RR; Tan J; Tilley SD; Moon J
    Chem Soc Rev; 2019 Oct; 48(19):4979-5015. PubMed ID: 31483417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning of BiVO
    Chen S; Prins S; Chen A
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18065-18073. PubMed ID: 32195563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature Effect on Photoelectrochemical Water Splitting: A Model Study Based on BiVO
    Zhou C; Zhang L; Tong X; Liu M
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61227-61236. PubMed ID: 34914379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Transparent, High-Performance, and Stable Sb
    Wang L; Lian W; Liu B; Lv H; Zhang Y; Wu X; Wang T; Gong J; Chen T; Xu H
    Adv Mater; 2022 Jul; 34(29):e2200723. PubMed ID: 35580906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe-Cr-Al containing oxide semiconductors as potential solar water-splitting materials.
    Sliozberg K; Stein HS; Khare C; Parkinson BA; Ludwig A; Schuhmann W
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4883-9. PubMed ID: 25650842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in TiO
    Zhang X; Zhang S; Cui X; Zhou W; Cao W; Cheng D; Sun Y
    Chem Asian J; 2022 Oct; 17(20):e202200668. PubMed ID: 35925726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the physical, structural and chemical properties on the photoresponse property of magnetron sputtered TiO2 for the application of water splitting.
    Rahman M; MacElroy JM; Dowling DP
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8642-51. PubMed ID: 22400237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic Semiconductors as Photoanodes for Solar-driven Photoelectrochemical Fuel Production.
    Sekar A; Sivula K
    Chimia (Aarau); 2021 Mar; 75(3):169-179. PubMed ID: 33766199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Nanoarchitectured Cu
    Lee DJ; Mohan Kumar G; Ganesh V; Jeon HC; Kim DY; Kang TW; Ilanchezhiyan P
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BiVO
    Xia L; Li J; Bai J; Li L; Chen S; Zhou B
    Nanomicro Lett; 2018; 10(1):11. PubMed ID: 30393660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface engineering of Ta
    Fu J; Fan Z; Nakabayashi M; Ju H; Pastukhova N; Xiao Y; Feng C; Shibata N; Domen K; Li Y
    Nat Commun; 2022 Feb; 13(1):729. PubMed ID: 35132086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.