These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36545030)

  • 1. Theory of Gating in Recurrent Neural Networks.
    Krishnamurthy K; Can T; Schwab DJ
    Phys Rev X; 2022; 12(1):. PubMed ID: 36545030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gated Orthogonal Recurrent Units: On Learning to Forget.
    Jing L; Gulcehre C; Peurifoy J; Shen Y; Tegmark M; Soljacic M; Bengio Y
    Neural Comput; 2019 Apr; 31(4):765-783. PubMed ID: 30764742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Considerations in using recurrent neural networks to probe neural dynamics.
    Kao JC
    J Neurophysiol; 2019 Dec; 122(6):2504-2521. PubMed ID: 31619125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences.
    He W; Wu Y; Deng L; Li G; Wang H; Tian Y; Ding W; Wang W; Xie Y
    Neural Netw; 2020 Dec; 132():108-120. PubMed ID: 32866745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling.
    Gajamannage K; Jayathilake DI; Park Y; Bollt EM
    Chaos; 2023 Jan; 33(1):013109. PubMed ID: 36725658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex visibility graphs to investigate recurrent neural network dynamics.
    Bianchi FM; Livi L; Alippi C; Jenssen R
    Sci Rep; 2017 Mar; 7():44037. PubMed ID: 28281563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expressive architectures enhance interpretability of dynamics-based neural population models.
    Sedler AR; Versteeg C; Pandarinath C
    Neuron Behav Data Anal Theory; 2023; 2023():. PubMed ID: 38699512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks.
    Bitzer S; Kiebel SJ
    Biol Cybern; 2012 Jul; 106(4-5):201-17. PubMed ID: 22581026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Investigation of the Dynamical Transitions in Harmonically Driven Random Networks of Firing-Rate Neurons.
    Nikiforou K; Mediano PAM; Shanahan M
    Cognit Comput; 2017; 9(3):351-363. PubMed ID: 28680506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics and Information Import in Recurrent Neural Networks.
    Metzner C; Krauss P
    Front Comput Neurosci; 2022; 16():876315. PubMed ID: 35573264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing computational system dynamics from neural data with recurrent neural networks.
    Durstewitz D; Koppe G; Thurm MI
    Nat Rev Neurosci; 2023 Nov; 24(11):693-710. PubMed ID: 37794121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex dynamics in simple Hopfield neural networks.
    Yang XS; Huang Y
    Chaos; 2006 Sep; 16(3):033114. PubMed ID: 17014219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structured flexibility in recurrent neural networks via neuromodulation.
    Costacurta JC; Bhandarkar S; Zoltowski DM; Linderman SW
    bioRxiv; 2024 Jul; ():. PubMed ID: 39091788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.
    Miconi T
    Elife; 2017 Feb; 6():. PubMed ID: 28230528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear Spiking Neural Systems With Autapses for Predicting Chaotic Time Series.
    Liu Q; Peng H; Long L; Wang J; Yang Q; Perez-Jimenez MJ; Orellana-Martin D
    IEEE Trans Cybern; 2024 Mar; 54(3):1841-1853. PubMed ID: 37155381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bio-inspired bistable recurrent cell allows for long-lasting memory.
    Vecoven N; Ernst D; Drion G
    PLoS One; 2021; 16(6):e0252676. PubMed ID: 34101750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic and deterministic dynamics in networks with excitable nodes.
    Rahimi-Majd M; Restrepo JG; Najafi MN
    Chaos; 2023 Feb; 33(2):023134. PubMed ID: 36859228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.