These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36545144)

  • 1. Bidentate substrate binding in Brønsted acid catalysis: structural space, hydrogen bonding and dimerization.
    Gramüller J; Dullinger P; Horinek D; Gschwind RM
    Chem Sci; 2022 Dec; 13(48):14366-14372. PubMed ID: 36545144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly acidic
    Hecht M; Dullinger P; Silva W; Horinek D; Gschwind RM
    Chem Sci; 2024 Jun; 15(24):9104-9111. PubMed ID: 38903236
    [No Abstract]   [Full Text] [Related]  

  • 3. Brønsted acid catalysis - the effect of 3,3'-substituents on the structural space and the stabilization of imine/phosphoric acid complexes.
    Melikian M; Gramüller J; Hioe J; Greindl J; Gschwind RM
    Chem Sci; 2019 May; 10(20):5226-5234. PubMed ID: 31191877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal acidity scale and reactivity evaluation of chiral phosphoric acids with different 3,3'-substituents in Brønsted acid catalysis.
    Rothermel K; Melikian M; Hioe J; Greindl J; Gramüller J; Žabka M; Sorgenfrei N; Hausler T; Morana F; Gschwind RM
    Chem Sci; 2019 Nov; 10(43):10025-10034. PubMed ID: 32015815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disulfonimides versus Phosphoric Acids in Brønsted Acid Catalysis: The Effect of Weak Hydrogen Bonds and Multiple Acceptors on Complex Structures and Reactivity.
    Rothermel K; Žabka M; Hioe J; Gschwind RM
    J Org Chem; 2019 Nov; 84(21):13221-13231. PubMed ID: 31550152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brønsted Acid Catalysis-Controlling the Competition between Monomeric versus Dimeric Reaction Pathways Enhances Stereoselectivities.
    Franta M; Gramüller J; Dullinger P; Kaltenberger S; Horinek D; Gschwind RM
    Angew Chem Int Ed Engl; 2023 Jul; 62(27):e202301183. PubMed ID: 36994733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brønsted Acid Catalysis-Structural Preferences and Mobility in Imine/Phosphoric Acid Complexes.
    Greindl J; Hioe J; Sorgenfrei N; Morana F; Gschwind RM
    J Am Chem Soc; 2016 Dec; 138(49):15965-15971. PubMed ID: 27960345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxation Dispersion NMR to Reveal Fast Dynamics in Brønsted Acid Catalysis: Influence of Sterics and H-Bond Strength on Conformations and Substrate Hopping.
    Lokesh N; Hioe J; Gramüller J; Gschwind RM
    J Am Chem Soc; 2019 Oct; 141(41):16398-16407. PubMed ID: 31545037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphothreonine (pThr)-Based Multifunctional Peptide Catalysis for Asymmetric Baeyer-Villiger Oxidations of Cyclobutanones.
    Featherston AL; Shugrue CR; Mercado BQ; Miller SJ
    ACS Catal; 2019 Jan; 9(1):242-252. PubMed ID: 31007966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral Brønsted acids for asymmetric organocatalysis.
    Kampen D; Reisinger CM; List B
    Top Curr Chem; 2010; 291():395-456. PubMed ID: 21494945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ternary complexes of chiral disulfonimides in transfer-hydrogenation of imines: the relevance of late intermediates in ion pair catalysis.
    Žabka M; Gschwind RM
    Chem Sci; 2021 Dec; 12(46):15263-15272. PubMed ID: 34976346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR Spectroscopic Characterization of Charge Assisted Strong Hydrogen Bonds in Brønsted Acid Catalysis.
    Sorgenfrei N; Hioe J; Greindl J; Rothermel K; Morana F; Lokesh N; Gschwind RM
    J Am Chem Soc; 2016 Dec; 138(50):16345-16354. PubMed ID: 27936674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer hydrogenation of ortho-hydroxybenzophenone ketimines catalysed by BINOL-derived phosphoric acid occurs by a 14-membered bifunctional transition structure.
    Reid JP; Goodman JM
    Org Biomol Chem; 2017 Aug; 15(33):6943-6947. PubMed ID: 28786453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enamine/Dienamine and Brønsted Acid Catalysis: Elusive Intermediates, Reaction Mechanisms, and Stereoinduction Modes Based on in Situ NMR Spectroscopy and Computational Studies.
    Renzi P; Hioe J; Gschwind RM
    Acc Chem Res; 2017 Dec; 50(12):2936-2948. PubMed ID: 29172479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Mechanistic Study of Asymmetric Transfer Hydrogenation of Imines on a Chiral Phosphoric Acid Derived Indium Metal-Organic Framework.
    Li X; Fan T; Wang Q; Shi T
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral Phosphoric Acid-Catalyzed Enantioselective Direct Arylation of Iminoquinones: A Case Study of the Model Selectivity.
    Zhu L; Yuan H; Zhang J
    J Org Chem; 2019 Nov; 84(21):13473-13482. PubMed ID: 31536352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic Interactions in Asymmetric Organocatalysis.
    Maji R; Mallojjala SC; Wheeler SE
    Acc Chem Res; 2023 Jul; 56(14):1990-2000. PubMed ID: 37410532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid-Base Catalysis in Glycosidations: A Nature Derived Alternative to the Generally Employed Methodology.
    Peng P; Schmidt RR
    Acc Chem Res; 2017 May; 50(5):1171-1183. PubMed ID: 28440624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Goldilocks Catalysts: Computational Insights into the Role of the 3,3' Substituents on the Selectivity of BINOL-Derived Phosphoric Acid Catalysts.
    Reid JP; Goodman JM
    J Am Chem Soc; 2016 Jun; 138(25):7910-7. PubMed ID: 27227372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.