These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36545682)

  • 1. Multiobjective optimization algorithm for accurate MADYMO reconstruction of vehicle-pedestrian accidents.
    Zou D; Fan Y; Liu N; Zhang J; Liu D; Liu Q; Li Z; Wang J; Huang J
    Front Bioeng Biotechnol; 2022; 10():1032621. PubMed ID: 36545682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A virtual test system representing the distribution of pedestrian impact configurations for future vehicle front-end optimization.
    Li G; Yang J; Simms C
    Traffic Inj Prev; 2016 Jul; 17(5):515-23. PubMed ID: 26786188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of a real-world car-to-pedestrian collision using geomatics techniques and numerical simulations.
    Wang J; Li Z; Ying F; Zou D; Chen Y
    J Forensic Leg Med; 2022 Oct; 91():102433. PubMed ID: 36179544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Dynamic Exclusive Pedestrian Phase Based on Transportation Equity and Cost Analysis.
    Lu Y; Wang T; Wang Z; Li C; Zhang Y
    Int J Environ Res Public Health; 2022 Jul; 19(13):. PubMed ID: 35805835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Reconstruction of Vehicle-human Crash Accident and Injury Analysis Based on 3D Laser Scanning, Multi-rigid-body Reconstruction and Optimized Genetic Algorithm].
    Sun J; Wang T; Li ZD; Shao Y; Zhang ZY; Feng H; Zou DH; Chen YJ
    Fa Yi Xue Za Zhi; 2017 Dec; 33(6):575-580. PubMed ID: 29441761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safer passenger car front shapes for pedestrians: A computational approach to reduce overall pedestrian injury risk in realistic impact scenarios.
    Li G; Yang J; Simms C
    Accid Anal Prev; 2017 Mar; 100():97-110. PubMed ID: 28129577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intelligent method for accident reconstruction involving car and e-bike coupling automatic simulation and multi-objective optimizations.
    Liu Y; Wan X; Xu W; Shi L; Deng G; Bai Z
    Accid Anal Prev; 2022 Jan; 164():106476. PubMed ID: 34844065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of vehicle front-end design on pedestrian ground impact.
    Crocetta G; Piantini S; Pierini M; Simms C
    Accid Anal Prev; 2015 Jun; 79():56-69. PubMed ID: 25813760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimated and underreported parameters in report based vehicle-bicycle accident reconstructions have a significant influence.
    Woering MH; Depreitere B; Vander Sloten J
    Accid Anal Prev; 2021 Feb; 150():105903. PubMed ID: 33310426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of Vehicle-pedestrian Collision Road Traffic Accidents Based on PC-Crash Software.
    Duan TL; He YW; Li Z; Yang F; Li L; Qu YQ
    Fa Yi Xue Za Zhi; 2019 Aug; 35(4):440-443. PubMed ID: 31532154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of adult pedestrian head impact conditions and injury risks in passenger car collisions based on real-world accident data.
    Peng Y; Deck C; Yang J; Otte D; Willinger R
    Traffic Inj Prev; 2013; 14(6):639-46. PubMed ID: 23859362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential benefits of controlled vehicle braking to reduce pedestrian ground contact injuries.
    Zou T; Shang S; Simms C
    Accid Anal Prev; 2019 Aug; 129():94-107. PubMed ID: 31132748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of pre-impact conditions of a cyclist involved in a vehicle-bicycle accident using an optimized MADYMO reconstruction combined with motion capture.
    Sun J; Li Z; Pan S; Feng H; Shao Y; Liu N; Huang P; Zou D; Chen Y
    J Forensic Leg Med; 2018 May; 56():99-107. PubMed ID: 29655045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the mechanisms of vehicle front-end shape on pedestrian head injuries caused by ground impact.
    Yin S; Li J; Xu J
    Accid Anal Prev; 2017 Sep; 106():285-296. PubMed ID: 28654844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of craniocerebral injury in facial collision accidents.
    Tian J; Zhang C; Wang Q
    PLoS One; 2020; 15(10):e0240359. PubMed ID: 33104724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The predictive capacity of the MADYMO ellipsoid pedestrian model for pedestrian ground contact kinematics and injury evaluation.
    Shang S; Masson C; Llari M; Py M; Ferrand Q; Arnoux PJ; Simms C
    Accid Anal Prev; 2021 Jan; 149():105803. PubMed ID: 33186825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of pedestrian brain injury due to vehicle impact using computational biomechanics models: Are head-only models sufficient?
    Wang F; Yu C; Wang B; Li G; Miller K; Wittek A
    Traffic Inj Prev; 2020; 21(1):102-107. PubMed ID: 31770038
    [No Abstract]   [Full Text] [Related]  

  • 18. Analysis of fall kinematics and injury risks in ground impact in car-pedestrian collisions using impulse.
    Mizuno K; Horiki M; Zhao Y; Yoshida A; Wakabayashi A; Hosokawa T; Tanaka Y; Hosokawa N
    Accid Anal Prev; 2022 Oct; 176():106793. PubMed ID: 35964394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realistic Reference for Evaluation of Vehicle Safety Focusing on Pedestrian Head Protection Observed From Kinematic Reconstruction of Real-World Collisions.
    Li G; Liu J; Li K; Zhao H; Shi L; Zhang S; Nie J
    Front Bioeng Biotechnol; 2021; 9():768994. PubMed ID: 34993187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Situational characteristics of fatal pedestrian accidents involving vehicles traveling at low speeds in Japan.
    Matsui Y; Oikawa S
    Traffic Inj Prev; 2019; 20(sup1):S1-S6. PubMed ID: 31381444
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.