BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 36545884)

  • 1. Ion-mediated control of structural integrity and reconfigurability of DNA nanostructures.
    Bednarz A; Sønderskov SM; Dong M; Birkedal V
    Nanoscale; 2023 Jan; 15(3):1317-1326. PubMed ID: 36545884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembly of DNA Nanostructures in Different Cations.
    Rodriguez A; Gandavadi D; Mathivanan J; Song T; Madhanagopal BR; Talbot H; Sheng J; Wang X; Chandrasekaran AR
    Small; 2023 Sep; 19(39):e2300040. PubMed ID: 37264756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled Nucleic Acid Nanostructures for Biomedical Applications.
    Chang X; Yang Q; Lee J; Zhang F
    Curr Top Med Chem; 2022; 22(8):652-667. PubMed ID: 35319373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-selective formation of a guanine quadruplex on DNA origami structures.
    Olejko L; Cywinski PJ; Bald I
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):673-7. PubMed ID: 25413669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural stability of DNA origami nanostructures in the presence of chaotropic agents.
    Ramakrishnan S; Krainer G; Grundmeier G; Schlierf M; Keller A
    Nanoscale; 2016 May; 8(19):10398-405. PubMed ID: 27142120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands.
    He K; Li Z; Liu L; Zheng M; Mao C
    Chembiochem; 2020 Aug; 21(15):2132-2136. PubMed ID: 32196869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.
    Chen H; Weng TW; Riccitelli MM; Cui Y; Irudayaraj J; Choi JH
    J Am Chem Soc; 2014 May; 136(19):6995-7005. PubMed ID: 24749534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.
    Kielar C; Xin Y; Shen B; Kostiainen MA; Grundmeier G; Linko V; Keller A
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9470-9474. PubMed ID: 29799663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Ionic Strength on the Thermal Stability of DNA Origami Nanostructures.
    Hanke M; Tomm E; Grundmeier G; Keller A
    Chembiochem; 2023 Jun; 24(12):e202300338. PubMed ID: 37140402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Staple Age on DNA Origami Nanostructure Assembly and Stability.
    Kielar C; Xin Y; Xu X; Zhu S; Gorin N; Grundmeier G; Möser C; Smith DM; Keller A
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31315177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the thermal behavior of DNA origami nanostructures.
    Wei X; Nangreave J; Jiang S; Yan H; Liu Y
    J Am Chem Soc; 2013 Apr; 135(16):6165-76. PubMed ID: 23537246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Heterogeneous Folding Pathways of DNA Origami Self-Assembly at the Molecular Level with Atomic Force Microscopy.
    Wang J; Wei Y; Zhang P; Wang Y; Xia Q; Liu X; Luo S; Shi J; Hu J; Fan C; Li B; Wang L; Zhou X; Li J
    Nano Lett; 2022 Sep; 22(17):7173-7179. PubMed ID: 35977401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the stability of DNA origami nanostructures: staple strand redesign versus enzymatic ligation.
    Ramakrishnan S; Schärfen L; Hunold K; Fricke S; Grundmeier G; Schlierf M; Keller A; Krainer G
    Nanoscale; 2019 Sep; 11(35):16270-16276. PubMed ID: 31455950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field.
    Li CY; Hemmig EA; Kong J; Yoo J; Hernández-Ainsa S; Keyser UF; Aksimentiev A
    ACS Nano; 2015 Feb; 9(2):1420-33. PubMed ID: 25623807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of DNA Origami Nanostructures in Physiological Media: The Role of Molecular Interactions.
    Linko V; Keller A
    Small; 2023 Aug; 19(34):e2301935. PubMed ID: 37093216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guiding the folding pathway of DNA origami.
    Dunn KE; Dannenberg F; Ouldridge TE; Kwiatkowska M; Turberfield AJ; Bath J
    Nature; 2015 Sep; 525(7567):82-6. PubMed ID: 26287459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward larger DNA origami.
    Marchi AN; Saaem I; Vogen BN; Brown S; LaBean TH
    Nano Lett; 2014 Oct; 14(10):5740-7. PubMed ID: 25179827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isothermal assembly of DNA origami structures using denaturing agents.
    Jungmann R; Liedl T; Sobey TL; Shih W; Simmel FC
    J Am Chem Soc; 2008 Aug; 130(31):10062-3. PubMed ID: 18613687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds.
    Chen X; Wang Q; Peng J; Long Q; Yu H; Li Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24344-24348. PubMed ID: 29989388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.