These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36546074)

  • 1. High-energy silicon-sulfurized poly(acrylonitrile) battery based on a nitrogen evolution reaction.
    Wang P; Xia C; Yang J; He X; Lv K; Ren S; Song H; Wang J; He P; Zhou H
    Sci Bull (Beijing); 2022 Feb; 67(3):256-262. PubMed ID: 36546074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Reversible Lithium-Metal Anode and Lithium-Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte.
    Chen J; Yang H; Zhang X; Lei J; Zhang H; Yuan H; Yang J; Nuli Y; Wang J
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33419-33427. PubMed ID: 31423761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy-High Power Lithium-Sulfur Batteries.
    Xie K; Yuan K; Zhang K; Shen C; Lv W; Liu X; Wang JG; Wei B
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4605-4613. PubMed ID: 28084721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Cation-Solvent Fully Coordinated Electrolyte for High-Energy-Density Lithium-Sulfur Full Cell Based On Solid-Solid Conversion.
    Yang H; Qiao Y; Chang Z; He P; Zhou H
    Angew Chem Int Ed Engl; 2021 Aug; 60(32):17726-17734. PubMed ID: 34101315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high performance lithium-ion-sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode.
    Zhang T; Hong M; Yang J; Xu Z; Wang J; Guo Y; Liang C
    Chem Sci; 2018 Dec; 9(47):8829-8835. PubMed ID: 30627400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Achieve Stable Lithium Metal Anode by Sulfurized-Polyacrylonitrile Modified Separator for High-Performance Lithium Batteries.
    Zhang T; Li X; Miao X; Sun R; Li J; Zhang Z; Wang R; Wang C; Li Z; Yin L
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14264-14273. PubMed ID: 35302748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Stable High-Capacity Lithium-Ion Battery Using a Biomass-Derived Sulfur-Carbon Cathode and Lithiated Silicon Anode.
    Marangon V; Hernández-Rentero C; Olivares-Marín M; Gómez-Serrano V; Caballero Á; Morales J; Hassoun J
    ChemSusChem; 2021 Aug; 14(16):3333-3343. PubMed ID: 34165920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A lithium-ion sulfur battery based on a carbon-coated lithium-sulfide cathode and an electrodeposited silicon-based anode.
    Agostini M; Hassoun J; Liu J; Jeong M; Nara H; Momma T; Osaka T; Sun YK; Scrosati B
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10924-8. PubMed ID: 24559093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Cyclable Lithium-Sulfur Batteries with a Dual-Type Sulfur Cathode and a Lithiated Si/SiOx Nanosphere Anode.
    Lee SK; Oh SM; Park E; Scrosati B; Hassoun J; Park MS; Kim YJ; Kim H; Belharouak I; Sun YK
    Nano Lett; 2015 May; 15(5):2863-8. PubMed ID: 25844807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Diluted Electrolyte for Long-Life Sulfurized Polyacrylonitrile-Based Anode-Free Li-S Batteries.
    Ma T; Ren X; Hu L; Teng W; Wang X; Wu G; Liu J; Nan D; Li B; Yu X
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfiguring Organosulfur Cathode by Over-Lithiation to Enable Ultrathick Lithium Metal Anode toward Practical Lithium-Sulfur Batteries.
    Jiang Z; Guo HJ; Zeng Z; Han Z; Hu W; Wen R; Xie J
    ACS Nano; 2020 Oct; 14(10):13784-13793. PubMed ID: 32924432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Intrinsic Flame-Retardant Organic Electrolyte for Safe Lithium-Sulfur Batteries.
    Yang H; Guo C; Chen J; Naveed A; Yang J; Nuli Y; Wang J
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):791-795. PubMed ID: 30426649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Carbon Paper as Interlayer to Stabilize the Lithium Anode for Lithium-Sulfur Battery.
    Kong LL; Zhang Z; Zhang YZ; Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31684-31694. PubMed ID: 27805807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Design of Solid-State Li-S Cell with Evaporated Lithium Anode To Eliminate Shuttle Effects.
    Hao Y; Wang S; Xu F; Liu Y; Feng N; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33735-33739. PubMed ID: 28945345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Bifunctional Host Materials of Sulfur and Lithium-Metal Based on Nitrogen-Enriched Polyacrylonitrile for Li-S Batteries.
    Dai Z; Wang M; Zhang Y; Wang B; Luo H; Zhang X; Wang Q; Zhang Y; Wu H
    Chemistry; 2020 Jul; 26(40):8784-8793. PubMed ID: 32583913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries.
    Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Li
    Yang YB; Liu YX; Song Z; Zhou YH; Zhan H
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38950-38958. PubMed ID: 29039907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-Site Fluorination for Enhancing Utilization of Lithium in a Lithium-Sulfur Full Battery.
    Ren YX; Wei L; Jiang HR; Zhao C; Zhao TS
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53860-53868. PubMed ID: 33201662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes.
    Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium-Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive.
    Kim HM; Hwang JY; Aurbach D; Sun YK
    J Phys Chem Lett; 2017 Nov; 8(21):5331-5337. PubMed ID: 29039678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.