These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 36546137)
1. Stabilizing the cycling stability of rechargeable lithium metal batteries with tris(hexafluoroisopropyl)phosphate additive. Sun H; Liu J; He J; Wang H; Jiang G; Qi S; Ma J Sci Bull (Beijing); 2022 Apr; 67(7):725-732. PubMed ID: 36546137 [TBL] [Abstract][Full Text] [Related]
2. Optimizing Electrode/Electrolyte Interphases and Li-Ion Flux/Solvation for Lithium-Metal Batteries with Qua-Functional Heptafluorobutyric Anhydride. Huang J; Liu J; He J; Wu M; Qi S; Wang H; Li F; Ma J Angew Chem Int Ed Engl; 2021 Sep; 60(38):20717-20722. PubMed ID: 34288325 [TBL] [Abstract][Full Text] [Related]
3. Armor-like Inorganic-rich Cathode Electrolyte Interphase Enabled by the Pentafluorophenylboronic Acid Additive for High-voltage Li||NCM622 Batteries. Yang Y; Wang H; Zhu C; Ma J Angew Chem Int Ed Engl; 2023 May; 62(22):e202300057. PubMed ID: 36929622 [TBL] [Abstract][Full Text] [Related]
4. Promoting a Stable Interface Using Localized High-Concentration Carbonate-Based Electrolyte for Li Metal Batteries. Le L; Liao M; Nguyen A; Wang D ACS Appl Mater Interfaces; 2023 Aug; 15(31):37497-37503. PubMed ID: 37497557 [TBL] [Abstract][Full Text] [Related]
5. LiF-Rich Electrode-Electrolyte Interfaces Enabled by Bifunctional Electrolyte Additive to Achieve High-Performance Li/LiNi Lei Y; Xu X; Yin J; Xu J; Xi K; Wei L; Wu H; Jiang S; Gao Y ACS Appl Mater Interfaces; 2023 Oct; 15(40):46941-46951. PubMed ID: 37782685 [TBL] [Abstract][Full Text] [Related]
6. Design of a LiF-Rich Solid Electrolyte Interphase Layer through Highly Concentrated LiFSI-THF Electrolyte for Stable Lithium Metal Batteries. Pham TD; Bin Faheem A; Lee KK Small; 2021 Nov; 17(46):e2103375. PubMed ID: 34636172 [TBL] [Abstract][Full Text] [Related]
7. Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries. Shi P; Zhang L; Xiang H; Liang X; Sun Y; Xu W ACS Appl Mater Interfaces; 2018 Jul; 10(26):22201-22209. PubMed ID: 29898366 [TBL] [Abstract][Full Text] [Related]
8. Reactive Polymer as Artificial Solid Electrolyte Interface for Stable Lithium Metal Batteries. Naren T; Kuang GC; Jiang R; Qing P; Yang H; Lin J; Chen Y; Wei W; Ji X; Chen L Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202305287. PubMed ID: 37118881 [TBL] [Abstract][Full Text] [Related]
9. Composite Lithium Protective Layer Formed In Situ for Stable Lithium Metal Batteries. Zhang Y; Sun C ACS Appl Mater Interfaces; 2021 Mar; 13(10):12099-12105. PubMed ID: 33653027 [TBL] [Abstract][Full Text] [Related]
10. Additive-Assisted Hydrophobic Li Li F; Liu J; He J; Hou Y; Wang H; Wu D; Huang J; Ma J Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202205091. PubMed ID: 35467069 [TBL] [Abstract][Full Text] [Related]
11. Gradient Solid Electrolyte Interphase and Lithium-Ion Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries. Li F; He J; Liu J; Wu M; Hou Y; Wang H; Qi S; Liu Q; Hu J; Ma J Angew Chem Int Ed Engl; 2021 Mar; 60(12):6600-6608. PubMed ID: 33306226 [TBL] [Abstract][Full Text] [Related]
12. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Qi S; Wang H; He J; Liu J; Cui C; Wu M; Li F; Feng Y; Ma J Sci Bull (Beijing); 2021 Apr; 66(7):685-693. PubMed ID: 36654444 [TBL] [Abstract][Full Text] [Related]
13. Construction of Localized High-Concentration PF Qi S; Tang X; He J; Liu J; Ma J Small Methods; 2023 Jun; 7(6):e2201693. PubMed ID: 36856163 [TBL] [Abstract][Full Text] [Related]
14. Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte. Zhang S; Yang G; Liu Z; Li X; Wang X; Chen R; Wu F; Wang Z; Chen L Nano Lett; 2021 Apr; 21(7):3310-3317. PubMed ID: 33797262 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous Stabilization of the Solid/Cathode Electrolyte Interface in Lithium Metal Batteries by a New Weakly Solvating Electrolyte. Pham TD; Lee KK Small; 2021 May; 17(20):e2100133. PubMed ID: 33797203 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries. Lin R; He Y; Wang C; Zou P; Hu E; Yang XQ; Xu K; Xin HL Nat Nanotechnol; 2022 Jul; 17(7):768-776. PubMed ID: 35773425 [TBL] [Abstract][Full Text] [Related]
17. Combining Organic Plastic Salts with a Bicontinuous Electrospun PVDF-HFP/Li Fang Z; Zhao M; Peng Y; Guan S ACS Appl Mater Interfaces; 2022 Apr; 14(16):18922-18934. PubMed ID: 35436406 [TBL] [Abstract][Full Text] [Related]
18. Trace Dual-Salt Electrolyte Additive Enabling a LiF-Rich Solid Electrolyte Interphase for High-Performance Lithium Metal Batteries. Xia Y; Hou W; Zhou P; Ou Y; Cheng G; Guo C; Liu F; Zhang W; Yan S; Lu Y; Zeng Y; Liu K Nano Lett; 2024 Oct; ():. PubMed ID: 39374070 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of Bilayer Polymer-Based Electrolyte with Functional Molecules in Enhancing the Capacity and Cycling Stability of High-Voltage Lithium Batteries. Liu J; Liang K; Duan H; Chen G; Deng Y ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38048569 [TBL] [Abstract][Full Text] [Related]
20. Multifunctional Electrolyte Additive for Bi-electrode Interphase Regulation and Electrolyte Stabilization in Li/LiNi Jiang S; Xu X; Yin J; Wu H; Zhu X; Gao Y ACS Appl Mater Interfaces; 2022 Aug; 14(34):38758-38768. PubMed ID: 35984711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]