These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36546534)

  • 1. The contraction-expansion behaviour in the demosponge Tethya wilhelma is light controlled and follows a diurnal rhythm.
    Flensburg SB; Garm A; Funch P
    J Exp Biol; 2022 Dec; 225(24):. PubMed ID: 36546534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae).
    Nickel M
    J Exp Biol; 2004 Dec; 207(Pt 26):4515-24. PubMed ID: 15579547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera).
    Ellwanger K; Nickel M
    Front Zool; 2006 Apr; 3():7. PubMed ID: 16643651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light- and clock-control of genes involved in detoxification.
    Carmona-Antoñanzas G; Santi M; Migaud H; Vera LM
    Chronobiol Int; 2017; 34(8):1026-1041. PubMed ID: 28617195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Like a 'rolling stone': quantitative analysis of the body movement and skeletal dynamics of the sponge Tethya wilhelma.
    Nickel M
    J Exp Biol; 2006 Aug; 209(Pt 15):2839-46. PubMed ID: 16857867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contractile sponge epithelium sensu lato--body contraction of the demosponge Tethya wilhelma is mediated by the pinacoderm.
    Nickel M; Scheer C; Hammel JU; Herzen J; Beckmann F
    J Exp Biol; 2011 May; 214(Pt 10):1692-8. PubMed ID: 21525315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metazoan circadian rhythm: toward an understanding of a light-based zeitgeber in sponges.
    Müller WE; Schröder HC; Pisignano D; Markl JS; Wang X
    Integr Comp Biol; 2013 Jul; 53(1):103-17. PubMed ID: 23474951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial light at night shifts daily activity patterns but not the internal clock in the great tit (
    Spoelstra K; Verhagen I; Meijer D; Visser ME
    Proc Biol Sci; 2018 Mar; 285(1875):. PubMed ID: 29593108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABA and glutamate specifically induce contractions in the sponge Tethya wilhelma.
    Ellwanger K; Eich A; Nickel M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jan; 193(1):1-11. PubMed ID: 17021832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of light and the circadian clock in the rhythmic oscillation of intraocular pressure: Studies in VPAC2 receptor and PACAP deficient mice.
    Fahrenkrug J; Georg B; Hannibal J; Jørgensen HL
    Exp Eye Res; 2018 Apr; 169():134-140. PubMed ID: 29428294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental effects of constant light on circadian behaviour and gene expressions in zebra finches: Insights into mechanisms of metabolic adaptation to aperiodic environment in diurnal animals.
    Prabhat A; Malik I; Jha NA; Bhardwaj SK; Kumar V
    J Photochem Photobiol B; 2020 Oct; 211():111995. PubMed ID: 32836050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wheel-running activity rhythms and masking responses in the diurnal palm squirrel,
    Kumar D; Soni SK; Kronfeld-Schor N; Singaravel M
    Chronobiol Int; 2020 Dec; 37(12):1693-1708. PubMed ID: 33044096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new flow-regulating cell type in the Demosponge Tethya wilhelma - functional cellular anatomy of a leuconoid canal system.
    Hammel JU; Nickel M
    PLoS One; 2014; 9(11):e113153. PubMed ID: 25409176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosstalk between metabolism and circadian clocks.
    Reinke H; Asher G
    Nat Rev Mol Cell Biol; 2019 Apr; 20(4):227-241. PubMed ID: 30635659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The circadian clock regulates the diurnal levels of microbial short-chain fatty acids and their rhythmic effects on colon contractility in mice.
    Segers A; Desmet L; Thijs T; Verbeke K; Tack J; Depoortere I
    Acta Physiol (Oxf); 2019 Mar; 225(3):e13193. PubMed ID: 30269420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhythmic growth explained by coincidence between internal and external cues.
    Nozue K; Covington MF; Duek PD; Lorrain S; Fankhauser C; Harmer SL; Maloof JN
    Nature; 2007 Jul; 448(7151):358-61. PubMed ID: 17589502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent.
    Jha PK; Bouâouda H; Gourmelen S; Dumont S; Fuchs F; Goumon Y; Bourgin P; Kalsbeek A; Challet E
    J Neurosci; 2017 Apr; 37(16):4343-4358. PubMed ID: 28320839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opsin1-2, G(q)α and arrestin levels at Limulus rhabdoms are controlled by diurnal light and a circadian clock.
    Battelle BA; Kempler KE; Parker AK; Gaddie CD
    J Exp Biol; 2013 May; 216(Pt 10):1837-49. PubMed ID: 23393287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals.
    Kumar Jha P; Challet E; Kalsbeek A
    Mol Cell Endocrinol; 2015 Dec; 418 Pt 1():74-88. PubMed ID: 25662277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.