BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 36546647)

  • 1. Mapping 3D Printability of Ionically Cross-Linked Cellulose Nanocrystal Inks: Architecting from Nano- to Macroscale Structures.
    Amini M; Kamkar M; Ahmadijokani F; Ghaderi S; Rojas OJ; Hosseini H; Arjmand M
    Biomacromolecules; 2023 Feb; 24(2):775-788. PubMed ID: 36546647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing.
    Lu Y; Rai R; Nitin N
    Food Res Int; 2023 Nov; 173(Pt 2):113384. PubMed ID: 37803721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing of Thermal Insulating Polyimide/Cellulose Nanocrystal Composite Aerogels with Low Dimensional Shrinkage.
    Feng C; Yu SS
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological insights into 3D printing of drug products: Drug nanocrystal-poloxamer gels for semisolid extrusion.
    Junnila A; Mortier L; Arbiol A; Harju E; Tomberg T; Hirvonen J; Viitala T; Karttunen AP; Peltonen L
    Int J Pharm; 2024 Apr; 655():124070. PubMed ID: 38554740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing of a bio-based ink made of cross-linked cellulose nanofibrils with various metal cations.
    Mietner JB; Jiang X; Edlund U; Saake B; Navarro JRG
    Sci Rep; 2021 Mar; 11(1):6461. PubMed ID: 33742068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant-Mediated Highly Conductive Cellulosic Inks for High-Resolution 3D Printing of Robust and Structured Electromagnetic Interference Shielding Aerogels.
    Amini M; Hosseini H; Dutta S; Wuttke S; Kamkar M; Arjmand M
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54753-54765. PubMed ID: 37787508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges.
    Shahbazi M; Jäger H
    ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances on enhancing 3D printing quality of protein-based inks: A review.
    Tian H; Wu J; Hu Y; Chen X; Cai X; Wen Y; Chen H; Huang J; Wang S
    Compr Rev Food Sci Food Saf; 2024 May; 23(3):e13349. PubMed ID: 38638060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel Structures.
    Li VC; Dunn CK; Zhang Z; Deng Y; Qi HJ
    Sci Rep; 2017 Aug; 7(1):8018. PubMed ID: 28808235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Oil Content on the Printability of Coconut Cream.
    Lee CP; Hoo JY; Hashimoto M
    Int J Bioprint; 2021; 7(2):354. PubMed ID: 33997437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Three-Dimensional Printability of Potato Starch Loaded onto Food Ink.
    Oh Y; Lee S; Lee NK; Rhee JK
    J Microbiol Biotechnol; 2024 Apr; 34(4):891-901. PubMed ID: 38379303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels.
    Barrulas RV; Corvo MC
    Gels; 2023 Dec; 9(12):. PubMed ID: 38131974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D/4D printing of cellulose nanocrystals-based biomaterials: Additives for sustainable applications.
    Khalid MY; Arif ZU; Noroozi R; Hossain M; Ramakrishna S; Umer R
    Int J Biol Macromol; 2023 Nov; 251():126287. PubMed ID: 37573913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Biomaterial Ink Viscosity Properties and Optimization of the Printing Process Based on Pattern Path Planning.
    Wu J; Wu C; Zou S; Li X; Ho B; Sun R; Liu C; Chen M
    Bioengineering (Basel); 2023 Nov; 10(12):. PubMed ID: 38135949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Undaria pinnatifida gel inks for food 3D printing are developed based on the colloidal properties of Undaria pinnatifida slurry and protein/colloidal/starch substances.
    Sun Y; Huang X; Guo S; Wang Y; Feng D; Dong X; Qi H
    Int J Biol Macromol; 2024 Mar; 261(Pt 1):129788. PubMed ID: 38290637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Nano/Microscale Chiral Self-Assembly in 3D Printed Constructs.
    Esmaeili M; Akbari E; George K; Rezvan G; Taheri-Qazvini N; Sadati M
    Nanomicro Lett; 2023 Dec; 16(1):54. PubMed ID: 38108930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer of a rational formulation and process development approach for 2D inks for pharmaceutical 2D and 3D printing.
    Schulz M; Bogdahn M; Geissler S; Quodbach J
    Int J Pharm X; 2024 Jun; 7():100256. PubMed ID: 38882398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different particle sizes of
    Fan M; Choi YJ; Wedamulla NE; Kim SH; Bae SM; Yang D; Kang H; Tang Y; Moon SH; Kim EK
    Heliyon; 2024 Feb; 10(4):e24915. PubMed ID: 38370168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocellulose-Based Inks-Effect of Alginate Content on the Water Absorption of 3D Printed Constructs.
    Espinosa E; Filgueira D; Rodríguez A; Chinga-Carrasco G
    Bioengineering (Basel); 2019 Jul; 6(3):. PubMed ID: 31366050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in 3D Printing with Protein-Based Inks.
    Mu X; Agostinacchio F; Xiang N; Pei Y; Khan Y; Guo C; Cebe P; Motta A; Kaplan DL
    Prog Polym Sci; 2021 Apr; 115():. PubMed ID: 33776158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.