These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3654667)

  • 1. Strains and micromotions of press-fit femoral stem prostheses.
    Walker PS; Schneeweis D; Murphy S; Nelson P
    J Biomech; 1987; 20(7):693-702. PubMed ID: 3654667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closeness of fit of uncemented stems improves the strain distribution in the femur.
    Hua J; Walker PS
    J Orthop Res; 1995 May; 13(3):339-46. PubMed ID: 7602395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of cortical strain after cemented and press-fit proximal and distal femoral replacement.
    Hua J; Walker PS
    J Orthop Res; 1992 Sep; 10(5):739-44. PubMed ID: 1500986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of femoral neck length, stem size, and body weight on strains in the proximal cement mantle.
    Harrington MA; O'Connor DO; Lozynsky AJ; Kovach I; Harris WH
    J Bone Joint Surg Am; 2002 Apr; 84(4):573-9. PubMed ID: 11940617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of cementless hip stems.
    Walker PS; Robertson DD
    Clin Orthop Relat Res; 1988 Oct; (235):25-34. PubMed ID: 3416530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fit of the uncemented femoral component and the use of cement influence the strain transfer the femoral cortex.
    Jasty M; O'Connor DO; Henshaw RM; Harrigan TP; Harris WH
    J Orthop Res; 1994 Sep; 12(5):648-56. PubMed ID: 7931781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of press-fit femoral stems on strains in the femur. A photoelastic coating study.
    Zhou XM; Walker PS; Robertson DD
    J Arthroplasty; 1990 Mar; 5(1):71-82. PubMed ID: 2319252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Load transfer in the proximal femur and primary stability of a cemented and uncemented femoral stem: An experimental study on cadaver femurs.
    Enoksen CH; Wik TS; Klaksvik J; Arthursson AJ; Husby OS; Gjerdet NR
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1195-1203. PubMed ID: 29095101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The various stress patterns of press-fit, ingrown, and cemented femoral stems.
    Huiskes R
    Clin Orthop Relat Res; 1990 Dec; (261):27-38. PubMed ID: 2245558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of femoral strains with cementless proximal-fill femoral implants of varied stem length.
    Arno S; Fetto J; Nguyen NQ; Kinariwala N; Takemoto R; Oh C; Walker PS
    Clin Biomech (Bristol); 2012 Aug; 27(7):680-5. PubMed ID: 22503474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of proximal femoral bone support on the fixation of a press-fit noncemented total hip replacement femoral component.
    Sangiorgio SN; Ebramzadeh E; Borkowski SL; Oakes DA; Reid JJ; Bengs BC
    J Appl Biomater Funct Mater; 2013 Jun; 11(1):e26-34. PubMed ID: 23413131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative micromotion of fully and proximally cemented femoral stems.
    Bachus KN; Bloebaum RD; Jones RE
    Clin Orthop Relat Res; 1999 Sep; (366):248-57. PubMed ID: 10627742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stem geometry changes initial femoral fixation stability of a revised press-fit hip prosthesis: A finite element study.
    Russell RD; Huo MH; Rodrigues DC; Kosmopoulos V
    Technol Health Care; 2016 Nov; 24(6):865-872. PubMed ID: 27434281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dorsal flanges on fixation of a cemented total hip replacement femoral stem.
    Sangiorgio SN; Ebramzadeh E; Longjohn DB; Dorr LD
    J Bone Joint Surg Am; 2004 Apr; 86(4):813-20. PubMed ID: 15069149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture load for periprosthetic femoral fractures in cemented versus uncemented hip stems: an experimental in vitro study.
    Thomsen MN; Jakubowitz E; Seeger JB; Lee C; Kretzer JP; Clarius M
    Orthopedics; 2008 Jul; 31(7):653. PubMed ID: 19292385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation pattern and load transfer of an uncemented femoral stem with modular necks. An experimental study in human cadaver femurs.
    Enoksen CH; Gjerdet NR; Klaksvik J; Arthursson AJ; Schnell-Husby O; Wik TS
    Clin Biomech (Bristol); 2016 Feb; 32():28-33. PubMed ID: 26785385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a collar on subsidence and local micromotion of cementless femoral stems: in vitro comparative study based on micro-computerised tomography.
    Malfroy Camine V; Rüdiger HA; Pioletti DP; Terrier A
    Int Orthop; 2018 Jan; 42(1):49-57. PubMed ID: 28589313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromotions in the primary fixation of cementless femoral stem prostheses.
    Gebauer D; Refior HJ; Haake M
    Arch Orthop Trauma Surg; 1989; 108(5):300-7. PubMed ID: 2783022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unstable versus stable uncemented femoral stems: a radiological study of periprosthetic bone changes in two types of uncemented stems with different concepts of fixation.
    Bodén H; Adolphson P; Oberg M
    Arch Orthop Trauma Surg; 2004 Jul; 124(6):382-92. PubMed ID: 15112084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary stability in cementless femoral stems: custom-made versus conventional femoral prosthesis.
    Götze C; Steens W; Vieth V; Poremba C; Claes L; Steinbeck J
    Clin Biomech (Bristol); 2002 May; 17(4):267-73. PubMed ID: 12034119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.