These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36546702)

  • 1. Not just the sum of its parts: Geographic variation and nonadditive effects of pyrazines in the chemical defence of an aposematic moth.
    Ottocento C; Winters AE; Rojas B; Mappes J; Burdfield-Steel E
    J Evol Biol; 2023 Jul; 36(7):1020-1031. PubMed ID: 36546702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to fight multiple enemies: target-specific chemical defences in an aposematic moth.
    Rojas B; Burdfield-Steel E; Pakkanen H; Suisto K; Maczka M; Schulz S; Mappes J
    Proc Biol Sci; 2017 Sep; 284(1863):. PubMed ID: 28954910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth.
    Rönkä K; Valkonen JK; Nokelainen O; Rojas B; Gordon S; Burdfield-Steel E; Mappes J
    Ecol Lett; 2020 Nov; 23(11):1654-1663. PubMed ID: 32881319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo Synthesis of Chemical Defenses in an Aposematic Moth.
    Burdfield-Steel E; Pakkanen H; Rojas B; Galarza JA; Mappes J
    J Insect Sci; 2018 Mar; 18(2):. PubMed ID: 29718491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety in Numbers: How Color Morph Frequency Affects Predation Risk in an Aposematic Moth.
    Gordon SP; Burdfield-Steel E; Kirvesoja J; Mappes J
    Am Nat; 2021 Jul; 198(1):128-141. PubMed ID: 34143722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths.
    Nokelainen O; Valkonen J; Lindstedt C; Mappes J
    J Anim Ecol; 2014 May; 83(3):598-605. PubMed ID: 24164666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-dependent taste-rejection by avian predation may select for defence chemical polymorphisms in aposematic prey.
    Skelhorn J; Rowe C
    Biol Lett; 2005 Dec; 1(4):500-3. PubMed ID: 17148243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal relationship between genetic and warning signal variation in the aposematic wood tiger moth (Parasemia plantaginis).
    Galarza JA; Nokelainen O; Ashrafi R; Hegna RH; Mappes J
    Mol Ecol; 2014 Oct; 23(20):4939-57. PubMed ID: 25211063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defense against predators incurs high reproductive costs for the aposematic moth
    Lindstedt C; Suisto K; Burdfield-Steel E; Winters AE; Mappes J
    Behav Ecol; 2020; 31(3):844-850. PubMed ID: 32595271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Out in the open: behavior's effect on predation risk and thermoregulation by aposematic caterpillars.
    Nielsen ME; Mappes J
    Behav Ecol; 2020; 31(4):1031-1039. PubMed ID: 32760178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A haplotype-resolved, de novo genome assembly for the wood tiger moth (Arctia plantaginis) through trio binning.
    Yen EC; McCarthy SA; Galarza JA; Generalovic TN; Pelan S; Nguyen P; Meier JI; Warren IA; Mappes J; Durbin R; Jiggins CD
    Gigascience; 2020 Aug; 9(8):. PubMed ID: 32808665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prey defence phenotype mediates multiple-predator effects in tri-trophic food webs.
    Guariento RD; Dalponti G; Carneiro LS; Caliman A
    J Anim Ecol; 2022 Oct; 91(10):2023-2036. PubMed ID: 35839141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Social learning within and across predator species reduces attacks on novel aposematic prey.
    Hämäläinen L; Mappes J; Rowland HM; Teichmann M; Thorogood R
    J Anim Ecol; 2020 May; 89(5):1153-1164. PubMed ID: 32077104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Costs and benefits of plant allelochemicals in herbivore diet in a multi enemy world.
    Reudler JH; Lindstedt C; Pakkanen H; Lehtinen I; Mappes J
    Oecologia; 2015 Dec; 179(4):1147-58. PubMed ID: 26296333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-dependent effects of prey defences.
    Jeschke JM; Tollrian R
    Oecologia; 2000 May; 123(3):391-396. PubMed ID: 28308594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of sorptive extraction techniques coupled to a new quantitative, sensitive, high throughput GC-MS/MS method for methoxypyrazine analysis in wine.
    Hjelmeland AK; Wylie PL; Ebeler SE
    Talanta; 2016 Feb; 148():336-45. PubMed ID: 26653458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Better the devil you know: avian predators find variation in prey toxicity aversive.
    Barnett CA; Bateson M; Rowe C
    Biol Lett; 2014 Nov; 10(11):20140533. PubMed ID: 25392317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Missed chances? Sequestration and non-sequestration of alkaloids by moths (Lepidoptera).
    Petzel-Witt S; Wunder C; Pogoda W; Toennes SW; Mebs D
    Toxicon; 2023 May; 227():107098. PubMed ID: 36990229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Detoxification Costs and Predation Risk on Foraging: Implications for Mimicry Dynamics.
    Halpin CG; Skelhorn J; Rowe C; Ruxton GD; Higginson AD
    PLoS One; 2017; 12(1):e0169043. PubMed ID: 28045959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth.
    Honma A; Mappes J; Valkonen JK
    Ecol Evol; 2015 Nov; 5(21):4863-74. PubMed ID: 26640666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.