BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36546767)

  • 1. Expression and function of an S1-type nuclease in the digestive fluid of a sundew, Drosera adelae.
    Yu M; Arai N; Ochiai T; Ohyama T
    Ann Bot; 2023 Mar; 131(2):335-346. PubMed ID: 36546767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (Drosera adelae).
    Arai N; Ohno Y; Jumyo S; Hamaji Y; Ohyama T
    J Exp Bot; 2021 Feb; 72(5):1946-1961. PubMed ID: 33247920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S-like ribonuclease gene expression in carnivorous plants.
    Nishimura E; Kawahara M; Kodaira R; Kume M; Arai N; Nishikawa J; Ohyama T
    Planta; 2013 Nov; 238(5):955-67. PubMed ID: 23959189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An S-like ribonuclease gene is used to generate a trap-leaf enzyme in the carnivorous plant Drosera adelae.
    Okabe T; Yoshimoto I; Hitoshi M; Ogawa T; Ohyama T
    FEBS Lett; 2005 Oct; 579(25):5729-33. PubMed ID: 16225872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization and evolution of carnivorous sundew (Drosera rotundifolia L.) class V β-1,3-glucanase.
    Michalko J; Renner T; Mészáros P; Socha P; Moravčíková J; Blehová A; Libantová J; Polóniová Z; Matušíková I
    Planta; 2017 Jan; 245(1):77-91. PubMed ID: 27580619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.).
    Jopcik M; Moravcikova J; Matusikova I; Bauer M; Rajninec M; Libantova J
    Planta; 2017 Feb; 245(2):313-327. PubMed ID: 27761648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction to: Expression and function of an S1-type nuclease in the digestive fluid of a sundew, Drosera adelae.
    Ann Bot; 2023 Apr; 131(3):e1. PubMed ID: 36912277
    [No Abstract]   [Full Text] [Related]  

  • 8. Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey.
    Matusíková I; Salaj J; Moravcíková J; Mlynárová L; Nap JP; Libantová J
    Planta; 2005 Dec; 222(6):1020-7. PubMed ID: 16049675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis.
    Pavlovič A; Krausko M; Libiaková M; Adamec L
    Ann Bot; 2014 Jan; 113(1):69-78. PubMed ID: 24201141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases.
    Arai N; Nishimura E; Kikuchi Y; Ohyama T
    Biochem Biophys Res Commun; 2015 Sep; 465(1):108-12. PubMed ID: 26235877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel proteases from the genome of the carnivorous plant Drosera capensis: Structural prediction and comparative analysis.
    Butts CT; Bierma JC; Martin RW
    Proteins; 2016 Oct; 84(10):1517-33. PubMed ID: 27353064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water Cannot Activate Traps of the Carnivorous Sundew Plant
    Pavlovič A; Vrobel O; Tarkowski P
    Plants (Basel); 2023 Apr; 12(9):. PubMed ID: 37176877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis.
    Krausko M; Perutka Z; Šebela M; Šamajová O; Šamaj J; Novák O; Pavlovič A
    New Phytol; 2017 Mar; 213(4):1818-1835. PubMed ID: 27933609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.): chitinases in sundew tissues.
    Libantová J; Kämäräinen T; Moravcíková J; Matusíková I; Salaj J
    Mol Biol Rep; 2009 May; 36(5):851-6. PubMed ID: 18437530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis.
    Hatcher CR; Sommer U; Heaney LM; Millett J
    Ann Bot; 2021 Aug; 128(3):301-314. PubMed ID: 34077503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases.
    Michalko J; Socha P; Mészáros P; Blehová A; Libantová J; Moravčíková J; Matušíková I
    Planta; 2013 Oct; 238(4):715-25. PubMed ID: 23832529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid and efficient method for isolating high quality DNA from leaves of carnivorous plants from the Drosera genus.
    Biteau F; Nisse E; Hehn A; Miguel S; Hannewald P; Bourgaud F
    Mol Biotechnol; 2012 Jul; 51(3):247-53. PubMed ID: 22002226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catapulting tentacles in a sticky carnivorous plant.
    Poppinga S; Hartmeyer SR; Seidel R; Masselter T; Hartmeyer I; Speck T
    PLoS One; 2012; 7(9):e45735. PubMed ID: 23049849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The plant s1-like nuclease family has evolved a highly diverse range of catalytic capabilities.
    Lesniewicz K; Karlowski WM; Pienkowska JR; Krzywkowski P; Poreba E
    Plant Cell Physiol; 2013 Jul; 54(7):1064-78. PubMed ID: 23620482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wound and insect-induced jasmonate accumulation in carnivorous Drosera capensis: two sides of the same coin.
    Mithöfer A; Reichelt M; Nakamura Y
    Plant Biol (Stuttg); 2014 Sep; 16(5):982-7. PubMed ID: 24499476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.