BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36547404)

  • 1. Recent Advances in Tetra- (Ti, Sn, Zr, Hf) and Pentavalent (Nb, V, Ta) Metal-Substituted Molecular Sieve Catalysis.
    Suib SL; Přech J; Szaniawska E; Čejka J
    Chem Rev; 2023 Feb; 123(3):877-917. PubMed ID: 36547404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications.
    Li J; Huang JY; Meng YX; Li L; Zhang LL; Jiang HL
    Chem Commun (Camb); 2023 Feb; 59(18):2541-2559. PubMed ID: 36749364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lewis Acid Zeolites for Biomass Conversion: Perspectives and Challenges on Reactivity, Synthesis, and Stability.
    Luo HY; Lewis JD; Román-Leshkov Y
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():663-92. PubMed ID: 27146555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sandia octahedral molecular sieves (SOMS): structural and property effects of charge-balancing the M(IV)-substituted (M = Ti, Zr) Niobate framework.
    Nyman M; Tripathi A; Parise JB; Maxwell RS; Nenoff TM
    J Am Chem Soc; 2002 Feb; 124(8):1704-13. PubMed ID: 11853447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrogating the Lewis Acidity of Metal Sites in Beta Zeolites with
    Gunther WR; Michaelis VK; Griffin RG; Román-Leshkov Y
    J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(50):28533-28544. PubMed ID: 28479940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes.
    Moliner M
    Dalton Trans; 2014 Mar; 43(11):4197-208. PubMed ID: 24142026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structures of homoleptic [tris(2,2'-bipyridine)M]n complexes of the early transition metals (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta; n = 1+, 0, 1-, 2-, 3-): an experimental and density functional theoretical study.
    Bowman AC; England J; Sproules S; Weyhermüller T; Wieghardt K
    Inorg Chem; 2013 Feb; 52(4):2242-56. PubMed ID: 23387926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.
    Gu ZY; Yang CX; Chang N; Yan XP
    Acc Chem Res; 2012 May; 45(5):734-45. PubMed ID: 22404189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zr-based metal-organic frameworks: design, synthesis, structure, and applications.
    Bai Y; Dou Y; Xie LH; Rutledge W; Li JR; Zhou HC
    Chem Soc Rev; 2016 Apr; 45(8):2327-67. PubMed ID: 26886869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating and Tuning Catalytic Sites on Zirconium- and Aluminum-Containing Nodes of Stable Metal-Organic Frameworks.
    Yang D; Gates BC
    Acc Chem Res; 2021 Apr; 54(8):1982-1991. PubMed ID: 33843190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable Metal-Organic Frameworks with Group 4 Metals: Current Status and Trends.
    Yuan S; Qin JS; Lollar CT; Zhou HC
    ACS Cent Sci; 2018 Apr; 4(4):440-450. PubMed ID: 29721526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zirconium Metal-Organic Cages: Synthesis and Applications.
    El-Sayed EM; Yuan YD; Zhao D; Yuan D
    Acc Chem Res; 2022 Jun; 55(11):1546-1560. PubMed ID: 35579616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Performance of Metal-Organic Frameworks for Modulation of Nitric Oxide Release from S-Nitrosothiols.
    Ling P; Gao X; Zang X; Sun X; Gao F
    Chem Asian J; 2022 Apr; 17(7):e202101358. PubMed ID: 35178879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemistry and applications of hafnium and cerium(iv) metal-organic frameworks.
    Hu Z; Wang Y; Zhao D
    Chem Soc Rev; 2021 Apr; 50(7):4629-4683. PubMed ID: 33616126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications.
    Yuan S; Feng L; Wang K; Pang J; Bosch M; Lollar C; Sun Y; Qin J; Yang X; Zhang P; Wang Q; Zou L; Zhang Y; Zhang L; Fang Y; Li J; Zhou HC
    Adv Mater; 2018 Sep; 30(37):e1704303. PubMed ID: 29430732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepwise Synthesis of Metal-Organic Frameworks.
    Bosch M; Yuan S; Rutledge W; Zhou HC
    Acc Chem Res; 2017 Apr; 50(4):857-865. PubMed ID: 28350434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances of Ti/Zr-Substituted Polyoxometalates: From Structural Diversity to Functional Applications.
    Ni Z; Lv H; Yang G
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal Active Sites and Their Catalytic Functions in Zeolites: Insights from Solid-State NMR Spectroscopy.
    Xu J; Wang Q; Deng F
    Acc Chem Res; 2019 Aug; 52(8):2179-2189. PubMed ID: 31063347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Scandium on the Structure, Microstructure and Superconductivity of Equimolar Sc-Hf-Nb-Ta-Ti-Zr Refractory High-Entropy Alloys.
    Krnel M; Jelen A; Vrtnik S; Luzar J; Gačnik D; Koželj P; Wencka M; Meden A; Hu Q; Guo S; Dolinšek J
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.