BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36547589)

  • 1. Exploring
    Ruma YN; Keniya MV; Monk BC
    J Fungi (Basel); 2022 Nov; 8(12):. PubMed ID: 36547589
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterisation of
    Ruma YN; Keniya MV; Tyndall JDA; Monk BC
    J Fungi (Basel); 2022 Jan; 8(1):. PubMed ID: 35050009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous Expression of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provides Tools for Antifungal Discovery.
    Keniya MV; Ruma YN; Tyndall JDA; Monk BC
    Antimicrob Agents Chemother; 2018 Nov; 62(11):. PubMed ID: 30126959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional model of lanosterol 14 alpha-demethylase from Cryptococcus neoformans: active-site characterization and insights into azole binding.
    Sheng C; Miao Z; Ji H; Yao J; Wang W; Che X; Dong G; Lü J; Guo W; Zhang W
    Antimicrob Agents Chemother; 2009 Aug; 53(8):3487-95. PubMed ID: 19470512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Homologous Resistance Mutations from Pathogenic Yeast on Saccharomyces cerevisiae Lanosterol 14α-Demethylase.
    Sagatova AA; Keniya MV; Tyndall JDA; Monk BC
    Antimicrob Agents Chemother; 2018 Mar; 62(3):. PubMed ID: 29263059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility.
    Song J; Zhai P; Zhang Y; Zhang C; Sang H; Han G; Keller NP; Lu L
    mBio; 2016 Feb; 7(1):e01919-15. PubMed ID: 26908577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modelling of lanosterol 14 alpha-demethylase (CYP51) from Saccharomyces cerevisiae via homology with CYP102, a unique bacterial cytochrome P450 isoform: quantitative structure-activity relationships (QSARs) within two related series of antifungal azole derivatives.
    Lewis DF; Wiseman A; Tarbit MH
    J Enzyme Inhib; 1999; 14(3):175-92. PubMed ID: 10445042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Insights into the Azole Resistance of the
    Graham DO; Wilson RK; Ruma YN; Keniya MV; Tyndall JDA; Monk BC
    J Fungi (Basel); 2021 Oct; 7(11):. PubMed ID: 34829185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lanosterol 14α-demethylase (CYP51)/histone deacetylase (HDAC) dual inhibitors for treatment of Candida tropicalis and Cryptococcus neoformans infections.
    Zhu T; Chen X; Li C; Tu J; Liu N; Xu D; Sheng C
    Eur J Med Chem; 2021 Oct; 221():113524. PubMed ID: 33992927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and properties of plasma membrane azole efflux pumps from the pathogenic fungi Cryptococcus gattii and Cryptococcus neoformans.
    Basso LR; Gast CE; Bruzual I; Wong B
    J Antimicrob Chemother; 2015 May; 70(5):1396-407. PubMed ID: 25630649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Fungal CYP51s: Their Functions, Structures, Related Drug Resistance, and Inhibitors.
    Zhang J; Li L; Lv Q; Yan L; Wang Y; Jiang Y
    Front Microbiol; 2019; 10():691. PubMed ID: 31068906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Saccharomyces cerevisiae CYP51 and a CYP51 fusion protein with NADPH cytochrome P-450 oxidoreductase expressed in Escherichia coli.
    Venkateswarlu K; Kelly DE; Kelly SL
    Antimicrob Agents Chemother; 1997 Apr; 41(4):776-80. PubMed ID: 9087488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of NADPH-cytochrome P450 Reductase to Azole Resistance in
    He D; Feng Z; Gao S; Wei Y; Han S; Wang L
    Front Microbiol; 2021; 12():709942. PubMed ID: 34594311
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification and Functional Characterization of a Cryptococcus neoformans UPC2 Homolog.
    Kim NK; Han K; Jung WH
    Mycobiology; 2010 Sep; 38(3):215-8. PubMed ID: 23956658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A defect in iron uptake enhances the susceptibility of Cryptococcus neoformans to azole antifungal drugs.
    Kim J; Cho YJ; Do E; Choi J; Hu G; Cadieux B; Chun J; Lee Y; Kronstad JW; Jung WH
    Fungal Genet Biol; 2012 Nov; 49(11):955-66. PubMed ID: 22975303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains.
    Scalas D; Mandras N; Roana J; Tardugno R; Cuffini AM; Ghisetti V; Benvenuti S; Tullio V
    BMC Complement Altern Med; 2018 May; 18(1):143. PubMed ID: 29724221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CYP51 Paralogue Structure Is Associated with Intrinsic Azole Resistance in Fungi.
    Van Rhijn N; Bromley M; Richardson M; Bowyer P
    mBio; 2021 Oct; 12(5):e0194521. PubMed ID: 34607450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH-Cytochrome P450 Reductase Ccr1 Is a Target of Tamoxifen and Participates in Its Antifungal Activity via Regulating Cell Wall Integrity in Fission Yeast.
    Liu Q; Guo X; Jiang G; Wu G; Miao H; Liu K; Chen S; Sakamoto N; Kuno T; Yao F; Fang Y
    Antimicrob Agents Chemother; 2020 Aug; 64(9):. PubMed ID: 32571823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional expression and characterization of CYP51 from dandruff-causing Malassezia globosa.
    Kim D; Lim YR; Ohk SO; Kim BJ; Chun YJ
    FEMS Yeast Res; 2011 Feb; 11(1):80-7. PubMed ID: 21114623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host Carbon Dioxide Concentration Is an Independent Stress for Cryptococcus neoformans That Affects Virulence and Antifungal Susceptibility.
    Krysan DJ; Zhai B; Beattie SR; Misel KM; Wellington M; Lin X
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.