BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36547647)

  • 1. The
    Jiao W; Yu H; Chen X; Xiao K; Jia D; Wang F; Zhang Y; Pan H
    J Fungi (Basel); 2022 Dec; 8(12):. PubMed ID: 36547647
    [No Abstract]   [Full Text] [Related]  

  • 2. Cross-Talk and Multiple Control of Target of Rapamycin (TOR) in Sclerotinia sclerotiorum.
    Jiao W; Ding W; Rollins JA; Liu J; Zhang Y; Zhang X; Pan H
    Microbiol Spectr; 2023 Mar; 11(2):e0001323. PubMed ID: 36943069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factor SsFoxE3 activating SsAtg8 is critical for sclerotia, compound appressoria formation, and pathogenicity in Sclerotinia sclerotiorum.
    Jiao W; Yu H; Cong J; Xiao K; Zhang X; Liu J; Zhang Y; Pan H
    Mol Plant Pathol; 2022 Feb; 23(2):204-217. PubMed ID: 34699137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The APSES Transcription Factor SsStuA Regulating Cell Wall Integrity Is Essential for Sclerotia Formation and Pathogenicity in
    Jiao W; Li M; Lei T; Liu X; Zhang J; Hu J; Zhang X; Liu J; Shi S; Pan H; Zhang Y
    J Fungi (Basel); 2024 Mar; 10(4):. PubMed ID: 38667909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription Factor SsSte12 Was Involved in Mycelium Growth and Development in
    Xu T; Li J; Yu B; Liu L; Zhang X; Liu J; Pan H; Zhang Y
    Front Microbiol; 2018; 9():2476. PubMed ID: 30386319
    [No Abstract]   [Full Text] [Related]  

  • 6.
    Qin L; Nong J; Cui K; Tang X; Gong X; Xia Y; Xu Y; Qiu Y; Li X; Xia S
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628791
    [No Abstract]   [Full Text] [Related]  

  • 7. The Coupling Between Cell Wall Integrity Mediated by MAPK Kinases and SsFkh1 Is Involved in Sclerotia Formation and Pathogenicity of
    Cong J; Xiao K; Jiao W; Zhang C; Zhang X; Liu J; Zhang Y; Pan H
    Front Microbiol; 2022; 13():816091. PubMed ID: 35547112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deficiency of the melanin biosynthesis genes SCD1 and THR1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum.
    Liang Y; Xiong W; Steinkellner S; Feng J
    Mol Plant Pathol; 2018 Jun; 19(6):1444-1453. PubMed ID: 29024255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SsAGM1-Mediated Uridine Diphosphate-
    Zhang J; Xiao K; Li M; Hu H; Zhang X; Liu J; Pan H; Zhang Y
    Front Microbiol; 2022; 13():938784. PubMed ID: 35814696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of the Gene Encoding Endo-β-1, 4-Xylanase Affects the Growth and Virulence of
    Yu Y; Xiao J; Du J; Yang Y; Bi C; Qing L
    Front Microbiol; 2016; 7():1787. PubMed ID: 27891117
    [No Abstract]   [Full Text] [Related]  

  • 11. The C2H2 Transcription Factor SsZFH1 Regulates the Size, Number, and Development of Apothecia in
    Liu L; Lyu X; Pan Z; Wang Q; Mu W; Benny U; Rollins JA; Pan H
    Phytopathology; 2022 Jul; 112(7):1476-1485. PubMed ID: 35021860
    [No Abstract]   [Full Text] [Related]  

  • 12. Selenium reduces the pathogenicity of Sclerotinia sclerotiorum by inhibiting sclerotial formation and germination.
    Cheng Q; Hu C; Jia W; Cai M; Zhao Y; Tang Y; Yang D; Zhou Y; Sun X; Zhao X
    Ecotoxicol Environ Saf; 2019 Nov; 183():109503. PubMed ID: 31394376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cAMP phosphodiesterase is essential for sclerotia formation and virulence in
    Xu Y; Qiu Y; Zhang Y; Li X
    Front Plant Sci; 2023; 14():1175552. PubMed ID: 37324679
    [No Abstract]   [Full Text] [Related]  

  • 14. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum.
    Fan H; Yu G; Liu Y; Zhang X; Liu J; Zhang Y; Rollins JA; Sun F; Pan H
    Mol Plant Pathol; 2017 Sep; 18(7):963-975. PubMed ID: 27353472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea.
    Xu Y; Tan J; Lu J; Zhang Y; Li X
    Plant Biotechnol J; 2024 Jan; 22(1):262-277. PubMed ID: 37845842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MAP kinase cascade broadly regulates the lifestyle of Sclerotinia sclerotiorum and can be targeted by HIGS for disease control.
    Tian L; Li J; Xu Y; Qiu Y; Zhang Y; Li X
    Plant J; 2024 Apr; 118(2):324-344. PubMed ID: 38149487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Host Transcriptional Response of
    Zhao H; Zhou T; Xie J; Cheng J; Jiang D; Fu Y
    Front Microbiol; 2020; 11():183. PubMed ID: 32117180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ε-poly-
    Zhou T; Liu H; Huang Y; Wang Z; Shan Y; Yue Y; Xia Z; Liang Y; An M; Wu Y
    J Fungi (Basel); 2021 Sep; 7(10):. PubMed ID: 34682242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate reductase is required for sclerotial development and virulence of
    Wei J; Yao C; Zhu Z; Gao Z; Yang G; Pan Y
    Front Plant Sci; 2023; 14():1096831. PubMed ID: 37342142
    [No Abstract]   [Full Text] [Related]  

  • 20. SsATG8 and SsNBR1 mediated-autophagy is required for fungal development, proteasomal stress response and virulence in Sclerotinia sclerotiorum.
    Zhang H; Li Y; Lai W; Huang K; Li Y; Wang Z; Chen X; Wang A
    Fungal Genet Biol; 2021 Dec; 157():103632. PubMed ID: 34710583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.