BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 36547804)

  • 1. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development.
    Yan W; Zheng Y; Dou C; Zhang G; Arnaout T; Cheng W
    Mol Biomed; 2022 Dec; 3(1):48. PubMed ID: 36547804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Recent progress in mycobacteriology].
    Okada M; Kobayashi K
    Kekkaku; 2007 Oct; 82(10):783-99. PubMed ID: 18018602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the alpha-mycolic acid.
    Glickman MS
    J Biol Chem; 2003 Mar; 278(10):7844-9. PubMed ID: 12502719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the Essential
    Kuhn ML; Alexander E; Minasov G; Page HJ; Warwrzak Z; Shuvalova L; Flores KJ; Wilson DJ; Shi C; Aldrich CC; Anderson WF
    ACS Infect Dis; 2016 Aug; 2(8):579-591. PubMed ID: 27547819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing novel inhibitors against cyclopropane mycolic acid synthase 3 (PcaA): targeting dormant state of
    Verma J; Subbarao N
    J Biomol Struct Dyn; 2021 Oct; 39(17):6339-6354. PubMed ID: 32715934
    [No Abstract]   [Full Text] [Related]  

  • 9. Lessons Learnt and the Way Forward for Drug Development Against Isocitrate Lyase from
    Antil M; Gupta V
    Protein Pept Lett; 2022; 29(12):1031-1041. PubMed ID: 36201276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets.
    Harth G; Horwitz MA
    J Exp Med; 1999 May; 189(9):1425-36. PubMed ID: 10224282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery.
    de Wet TJ; Warner DF; Mizrahi V
    Acc Chem Res; 2019 Aug; 52(8):2340-2348. PubMed ID: 31361123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a Heat Diffusion Model to Detect Potential Drug Resistance Genes of
    Cui ZJ; Zhang WT; Zhu Q; Zhang QY; Zhang HY
    Protein Pept Lett; 2020; 27(8):711-717. PubMed ID: 32167422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Prospects for development of new antituberculous drugs].
    Tomioka H
    Kekkaku; 2002 Aug; 77(8):573-84. PubMed ID: 12235850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis.
    Prezzemolo T; Guggino G; La Manna MP; Di Liberto D; Dieli F; Caccamo N
    Front Immunol; 2014; 5():180. PubMed ID: 24795723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria.
    Pal R; Hameed S; Fatima Z
    Biometals; 2019 Feb; 32(1):49-63. PubMed ID: 30430296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis.
    Urban M; Šlachtová V; Brulíková L
    Eur J Med Chem; 2021 Feb; 212():113139. PubMed ID: 33422979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of novel lysine ɛ-aminotransferase inhibitors: An intriguing potential target for latent tuberculosis.
    Devi PB; Sridevi JP; Kakan SS; Saxena S; Jeankumar VU; Soni V; Anantaraju HS; Yogeeswari P; Sriram D
    Tuberculosis (Edinb); 2015 Dec; 95(6):786-794. PubMed ID: 26299907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Mutations in Mycobacterium tuberculosis MmpL3 Increase Resistance to MmpL3 Inhibitors.
    McNeil MB; O'Malley T; Dennison D; Shelton CD; Sunde B; Parish T
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33055263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in mycobacteria.
    Rodionova IA; Schuster BM; Guinn KM; Sorci L; Scott DA; Li X; Kheterpal I; Shoen C; Cynamon M; Locher C; Rubin EJ; Osterman AL
    mBio; 2014 Feb; 5(1):. PubMed ID: 24549842
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 27.