These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 3654817)

  • 1. Separation of the valence intermediates of human haemoglobin by high-performance chromatofocusing.
    Bolzacchini E; Fermo I; Rovida E; Colombo R; Samaja M
    J Chromatogr; 1987 Jun; 397():233-7. PubMed ID: 3654817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of human hemoglobin valence intermediates by preparative immobilized pH gradients.
    Gelfi C; Righetti PG; Rovida E; Samaja M
    J Biochem Biophys Methods; 1987 Jun; 14(3):139-47. PubMed ID: 3680854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance cation-exchange chromatofocusing of proteins.
    Kang X; Frey DD
    J Chromatogr A; 2003 Mar; 991(1):117-28. PubMed ID: 12703906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient chromatofocusing. versatile pH gradient separation of proteins in ion-exchange HPLC: characterization studies.
    Shan L; Anderson DJ
    Anal Chem; 2002 Nov; 74(21):5641-9. PubMed ID: 12433100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in intermediate haemoglobins during autoxidation of haemoglobin.
    Tomoda A; Yoneyama Y; Tsuji A
    Biochem J; 1981 May; 195(2):485-92. PubMed ID: 7316964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoelectric focusing in free Ampholine solution and attempts at isoelectric focusing in pH gradients created in ordinary buffers.
    Lundahl P; Hjertén S
    Ann N Y Acad Sci; 1973 Jun; 209():94-111. PubMed ID: 4515056
    [No Abstract]   [Full Text] [Related]  

  • 7. Continuous beds for microchromatography: chromatofocusing and anion exchange chromatography.
    Li YM; Liao JL; Zhang R; Henriksson H; Hjertén S
    Anal Biochem; 1999 Feb; 267(1):121-4. PubMed ID: 9918663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatofocusing of human hemoglobins: application to the quantitation of hemoglobin A2.
    Francina A; Dorleac ; Cloppet H; Delaunay J
    J Chromatogr; 1982 Mar; 228():177-85. PubMed ID: 7076742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examinations of cerebrospinal fluid immunoglobulin G by chromatofocusing.
    Gallo P; Sidén A
    J Neurol; 1985; 232(4):231-5. PubMed ID: 4045515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatofocusing of peptides and proteins using linear pH gradients formed on strong ion-exchange adsorbents.
    Kang X; Frey DD
    Biotechnol Bioeng; 2004 Aug; 87(3):376-87. PubMed ID: 15281112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance and ion-exchange chromatography and chromatofocusing of the human uterine progesterone receptor: its application to the identification of 21-[3H]dehydro Org 2058-labelled receptor.
    Heubner A; Manz B; Grill HJ; Pollow K
    J Chromatogr; 1984 Aug; 297():301-11. PubMed ID: 6548479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion exchange, chromatofocusing and size exclusion high-performance liquid chromatography of the human uterine progesterone receptor.
    Holmes SD; Smith RG
    J Steroid Biochem; 1985 Dec; 23(6A):939-42. PubMed ID: 4094421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of deamidated forms of triosephosphate isomerase by chromatofocusing. A comparison of chromatofocusing with column isoelectric focusing.
    Oray B; Yüksel KU; Gracy RW
    J Chromatogr; 1983 Jul; 265(1):126-30. PubMed ID: 6619231
    [No Abstract]   [Full Text] [Related]  

  • 14. Experimental and numerical studies of the chromatofocusing of dilute proteins using retained pH gradients formed on a strong-base anion-exchange column.
    Strong JC; Frey DD
    J Chromatogr A; 1997 May; 769(2):129-43. PubMed ID: 9188179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractionation of horseradish peroxidase by preparative isoelectric focusing, gel chromatography and ion-exchange chromatography.
    Delincée H; Radola BJ
    Eur J Biochem; 1975 Mar; 52(2):321-30. PubMed ID: 240683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance chromatofocusing using linear and concave pH gradients formed with simple buffer mixtures. II. Separation of proteins.
    Kang X; Bates RC; Frey DD
    J Chromatogr A; 2000 Aug; 890(1):37-43. PubMed ID: 10976792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mini-chromatofocusing of plant and fungal polyphenoloxidases.
    Moore BM; Flurkey WH
    Anal Biochem; 1988 Aug; 172(2):504-8. PubMed ID: 3142293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemoglobin Syracuse (alpha2beta2-143(H21)His leads to Pro), a new high-affinity variant detected by special electrophoretic methods. Observations on the auto-oxidation of normal and variant hemoglobins.
    Jensen M; Oski FA; Nathan DG; Bunn HF
    J Clin Invest; 1975 Mar; 55(3):469-77. PubMed ID: 234980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the precision of difference chromatography.
    Gilbert GA; Gilbert LM; Shawky NA
    Biochim Biophys Acta; 1975 Feb; 379(2):488-95. PubMed ID: 1122300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of chromatofocusing for separation of beta-lactamases. VI. Comparative studies on two chromatofocusing polybuffer exchanger matrices with the R46 plasmid coded beta-lactamase carried by the Escherichia coli K12 J5-3 strain.
    Kiss L; Toth-Martinez BL; Gál S; Hernádi FJ
    J Chromatogr; 1985 Sep; 333(1):244-8. PubMed ID: 3905841
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.